61,769 research outputs found

    Approximate Degree and the Complexity of Depth Three Circuits

    Get PDF
    Threshold weight, margin complexity, and Majority-of-Threshold circuit size are basic complexity measures of Boolean functions that arise in learning theory, communication complexity, and circuit complexity. Each of these measures might exhibit a chasm at depth three: namely, all polynomial size Boolean circuits of depth two have polynomial complexity under the measure, but there may exist Boolean circuits of depth three that have essentially maximal complexity exp(Theta(n)). However, existing techniques are far from showing this: for all three measures, the best lower bound for depth three circuits is exp(Omega(n^{2/5})). Moreover, prior methods exclusively study block-composed functions. Such methods appear intrinsically unable to prove lower bounds better than exp(Omega(sqrt{n})) even for depth four circuits, and have yet to prove lower bounds better than exp(Omega(sqrt{n})) for circuits of any constant depth. We take a step toward showing that all of these complexity measures indeed exhibit a chasm at depth three. Specifically, for any arbitrarily small constant delta > 0, we exhibit a depth three circuit of polynomial size (in fact, an O(log n)-decision list) of complexity exp(Omega(n^{1/2-delta})) under each of these measures. Our methods go beyond the block-composed functions studied in prior work, and hence may not be subject to the same barriers. Accordingly, we suggest natural candidate functions that may exhibit stronger bounds

    On the Power of Democratic Networks

    Get PDF
    Linear Threshold Boolean units (LTU) are the basic processing components of artificial neural networks of Boolean activations. Quantization of their parameters is a central question in hardware implementation, when numerical technologies are used to store the configuration of the circuit. In the previous studies on the circuit complexity of feedforward neural networks, no differences had been made between a network with ``small'' integer weights and one composed of majority units (LTU with weights in {-1,0, 1}), since any connection of weight w (w integer) can be simulated by |w| connections of value Sgn(w). This paper will focus on the circuit complexity of democratic networks, i.e. circuits of majority units with at most one connection between each pair of units. The main results presented are the following: any Boolean function can be computed by a depth-3 non-degenerate democratic network and can be expressed as a linear threshold function of majorities; AT-LEAST-k and AT-MOST-k are computable by a depth-2, polynomial size democratic network; the smallest sizes of depth-2 circuits computing PARITY are identical for a democratic network and for a usual network; the VC of the class of the majority functions is n 1, i.e. equal to that of the class of any linear threshold functions

    Quantified Derandomization of Linear Threshold Circuits

    Full text link
    One of the prominent current challenges in complexity theory is the attempt to prove lower bounds for TC0TC^0, the class of constant-depth, polynomial-size circuits with majority gates. Relying on the results of Williams (2013), an appealing approach to prove such lower bounds is to construct a non-trivial derandomization algorithm for TC0TC^0. In this work we take a first step towards the latter goal, by proving the first positive results regarding the derandomization of TC0TC^0 circuits of depth d>2d>2. Our first main result is a quantified derandomization algorithm for TC0TC^0 circuits with a super-linear number of wires. Specifically, we construct an algorithm that gets as input a TC0TC^0 circuit CC over nn input bits with depth dd and n1+exp⁑(βˆ’d)n^{1+\exp(-d)} wires, runs in almost-polynomial-time, and distinguishes between the case that CC rejects at most 2n1βˆ’1/5d2^{n^{1-1/5d}} inputs and the case that CC accepts at most 2n1βˆ’1/5d2^{n^{1-1/5d}} inputs. In fact, our algorithm works even when the circuit CC is a linear threshold circuit, rather than just a TC0TC^0 circuit (i.e., CC is a circuit with linear threshold gates, which are stronger than majority gates). Our second main result is that even a modest improvement of our quantified derandomization algorithm would yield a non-trivial algorithm for standard derandomization of all of TC0TC^0, and would consequently imply that NEXPβŠ†ΜΈTC0NEXP\not\subseteq TC^0. Specifically, if there exists a quantified derandomization algorithm that gets as input a TC0TC^0 circuit with depth dd and n1+O(1/d)n^{1+O(1/d)} wires (rather than n1+exp⁑(βˆ’d)n^{1+\exp(-d)} wires), runs in time at most 2nexp⁑(βˆ’d)2^{n^{\exp(-d)}}, and distinguishes between the case that CC rejects at most 2n1βˆ’1/5d2^{n^{1-1/5d}} inputs and the case that CC accepts at most 2n1βˆ’1/5d2^{n^{1-1/5d}} inputs, then there exists an algorithm with running time 2n1βˆ’Ξ©(1)2^{n^{1-\Omega(1)}} for standard derandomization of TC0TC^0.Comment: Changes in this revision: An additional result (a PRG for quantified derandomization of depth-2 LTF circuits); rewrite of some of the exposition; minor correction

    Polynomial Threshold Functions, AC^0 Functions and Spectral Norms

    Get PDF
    The class of polynomial-threshold functions is studied using harmonic analysis, and the results are used to derive lower bounds related to AC^0 functions. A Boolean function is polynomial threshold if it can be represented as a sign function of a sparse polynomial (one that consists of a polynomial number of terms). The main result is that polynomial-threshold functions can be characterized by means of their spectral representation. In particular, it is proved that a Boolean function whose L_1 spectral norm is bounded by a polynomial in n is a polynomial-threshold function, and that a Boolean function whose L_∞^(-1) spectral norm is not bounded by a polynomial in n is not a polynomial-threshold function. Some results for AC^0 functions are derived
    • …
    corecore