22,410 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Measuring Relations Between Concepts In Conceptual Spaces

    Full text link
    The highly influential framework of conceptual spaces provides a geometric way of representing knowledge. Instances are represented by points in a high-dimensional space and concepts are represented by regions in this space. Our recent mathematical formalization of this framework is capable of representing correlations between different domains in a geometric way. In this paper, we extend our formalization by providing quantitative mathematical definitions for the notions of concept size, subsethood, implication, similarity, and betweenness. This considerably increases the representational power of our formalization by introducing measurable ways of describing relations between concepts.Comment: Accepted at SGAI 2017 (http://www.bcs-sgai.org/ai2017/). The final publication is available at Springer via https://doi.org/10.1007/978-3-319-71078-5_7. arXiv admin note: substantial text overlap with arXiv:1707.05165, arXiv:1706.0636

    The behavior of fuzzy implications in a fuzzy knowledge base.

    Get PDF
    More and more companies today discover the advantages of using knowledge bases for their processes and services. Recently, fuzzy set theory has also captured the attention due to good performances within control systems. Therefore, it is very appealing to combine the advantages of these two areas into a fuzzy knowledge base. However, obtaining the results of control systems in a knowleg based environment is not so straightforward. This paper will investigate one aspect of the reasoning process, namely the behavior of the implication. From the different tests performed, four main behaviors of implications can be found. First of all, there are the implications not always resulting in a convex set. A second classs - the so-called impotent implications- doesn't change the predefined set at all. A third grouping reveals always a constant value portion, that rises or falls according to the changed input. A final divsion shifts the complete set in its whole conformably the intuition.Implications; Companies; Advantages; Knowledge; Processes; Theory; Performance; Systems; Value;

    Adaptive Non-singleton Type-2 Fuzzy Logic Systems: A Way Forward for Handling Numerical Uncertainties in Real World Applications

    Get PDF
    Real world environments are characterized by high levels of linguistic and numerical uncertainties. A Fuzzy Logic System (FLS) is recognized as an adequate methodology to handle the uncertainties and imprecision available in real world environments and applications. Since the invention of fuzzy logic, it has been applied with great success to numerous real world applications such as washing machines, food processors, battery chargers, electrical vehicles, and several other domestic and industrial appliances. The first generation of FLSs were type-1 FLSs in which type-1 fuzzy sets were employed. Later, it was found that using type-2 FLSs can enable the handling of higher levels of uncertainties. Recent works have shown that interval type-2 FLSs can outperform type-1 FLSs in the applications which encompass high uncertainty levels. However, the majority of interval type-2 FLSs handle the linguistic and input numerical uncertainties using singleton interval type-2 FLSs that mix the numerical and linguistic uncertainties to be handled only by the linguistic labels type-2 fuzzy sets. This ignores the fact that if input numerical uncertainties were present, they should affect the incoming inputs to the FLS. Even in the papers that employed non-singleton type-2 FLSs, the input signals were assumed to have a predefined shape (mostly Gaussian or triangular) which might not reflect the real uncertainty distribution which can vary with the associated measurement. In this paper, we will present a new approach which is based on an adaptive non-singleton interval type-2 FLS where the numerical uncertainties will be modeled and handled by non-singleton type-2 fuzzy inputs and the linguistic uncertainties will be handled by interval type-2 fuzzy sets to represent the antecedents’ linguistic labels. The non-singleton type-2 fuzzy inputs are dynamic and they are automatically generated from data and they do not assume a specific shape about the distribution associated with the given sensor. We will present several real world experiments using a real world robot which will show how the proposed type-2 non-singleton type-2 FLS will produce a superior performance to its singleton type-1 and type-2 counterparts when encountering high levels of uncertainties.</jats:p

    A Two-stage Classification Method for High-dimensional Data and Point Clouds

    Full text link
    High-dimensional data classification is a fundamental task in machine learning and imaging science. In this paper, we propose a two-stage multiphase semi-supervised classification method for classifying high-dimensional data and unstructured point clouds. To begin with, a fuzzy classification method such as the standard support vector machine is used to generate a warm initialization. We then apply a two-stage approach named SaT (smoothing and thresholding) to improve the classification. In the first stage, an unconstraint convex variational model is implemented to purify and smooth the initialization, followed by the second stage which is to project the smoothed partition obtained at stage one to a binary partition. These two stages can be repeated, with the latest result as a new initialization, to keep improving the classification quality. We show that the convex model of the smoothing stage has a unique solution and can be solved by a specifically designed primal-dual algorithm whose convergence is guaranteed. We test our method and compare it with the state-of-the-art methods on several benchmark data sets. The experimental results demonstrate clearly that our method is superior in both the classification accuracy and computation speed for high-dimensional data and point clouds.Comment: 21 pages, 4 figure

    Tropical linear algebra with the Lukasiewicz T-norm

    Get PDF
    The max-Lukasiewicz semiring is defined as the unit interval [0,1] equipped with the arithmetics "a+b"=max(a,b) and "ab"=max(0,a+b-1). Linear algebra over this semiring can be developed in the usual way. We observe that any problem of the max-Lukasiewicz linear algebra can be equivalently formulated as a problem of the tropical (max-plus) linear algebra. Based on this equivalence, we develop a theory of the matrix powers and the eigenproblem over the max-Lukasiewicz semiring.Comment: 27 page

    Egalitarianism in convex fuzzy games

    Get PDF
    cooperative games;algorithm

    Egalitarianism in Convex Fuzzy Games

    Get PDF
    In this paper the egalitarian solution for convex cooperative fuzzy games is introduced.The classical Dutta-Ray algorithm for finding the constrained egalitarian solution for convex crisp games is adjusted to provide the egalitarian solution of a convex fuzzy game.This adjusted algorithm is also a finite algorithm, because the convexity of a fuzzy game implies in each step the existence of a maximal element which corresponds to a crisp coalition.For arbitrary fuzzy games the equal division core is introduced.It turns out that both the equal division core and the egalitariansolution of a convex fuzzy game coincide with the corresponding equal division core and the constrained egalitarian solution, respectively, of the related crisp game.game theory
    • …
    corecore