214 research outputs found

    Exploitation of Digital Filters to Advance the Single-Phase T/4 Delay PLL System

    Get PDF
    With the development of digital signal processing technologies, control and monitoring of power electronics conversion systems have been evolving to become fully digital. As the basic element in the design and analysis phases of digital controllers or filters, a number of unit delays (z-1) have been employed, e.g., in a cascaded structure. Practically, the number of unit delays is designed as an integer, which is related to the sampling frequency as well as the ac signal fundamental frequency (e.g., 50 Hz). More common, the sampling frequency is fixed during operation for simplicity and design. Hence, any disturbance in the ac signal will violate this design rule and it can become a major challenge for digital controllers. To deal with the above issue, this paper first exploits a virtual unit delay (zv-1) to emulate the variable sampling behavior in practical digital signal processors with a fixed sampling rate. This exploitation is demonstrated on a T/4 Delay Phase Locked Loop (PLL) system for a single-phase grid-connected inverter. The T/4 Delay PLL requires to cascade 50 unit delays when implemented (for a 50-Hz system with 10 kHz sampling frequency). Furthermore, digital frequency adaptive comb filters are adopted to enhance the performance of the T/4 Delay PLL when the grid suffers from harmonics. Experimental results have confirmed the effectiveness of the digital filters for advanced control systems

    Quasi Type-1 PLL With Tunable Phase Detector for Unbalanced and Distorted Three-Phase Grid

    Get PDF
    International audienc

    A Systematic Approach to Design High-Order Phase-Locked Loops

    Get PDF

    Fast amplitude estimation for Low-Voltage Ride-Through Operation of Single-Phase Systems

    Get PDF

    Modeling, Analyzing, and Designing Advanced Synchronization Techniques for Power Converters

    Get PDF

    Symmetrical PLL for SISO Impedance Modeling and Enhanced Stability in Weak Grids

    Get PDF

    Three-Phase PLLs:A Review of Recent Advances

    Get PDF

    Adaptive Vectorial Filter for Grid Synchronization of Power Converters Under Unbalanced and/or Distorted Grid Conditions

    Get PDF
    This paper presents a new synchronization scheme for detecting multiple positive-/negative-sequence frequency harmonics in three-phase systems for grid-connected power converters. The proposed technique is called MAVF-FLL because it is based on the use of multiple adaptive vectorial filters (AVFs) working together inside a harmonic decoupling network, resting on a frequency-locked loop (FLL) which makes the system frequency adaptive. The method uses the vectorial properties of the three-phase input signal in the αβ reference frame in order to obtain the different harmonic components. The MAVF-FLL is fully designed and analyzed, addressing the tuning procedure in order to obtain the desired and predefined performance. The proposed algorithm is evaluated by both simulation and experimental results, demonstrating its ability to perform as required for detecting different harmonic components under a highly unbalanced and distorted input grid voltage
    corecore