102 research outputs found

    Swimming like algae: biomimetic soft artificial cilia

    Get PDF
    Cilia are used effectively in a wide variety of biological systems from fluid transport to thrust generation. Here, we present the design and implemen- tation of artificial cilia, based on a biomimetic planar actuator using soft- smart materials. This actuator is modelled on the cilia movement of the alga Volvox, and represents the cilium as a piecewise constant-curvature robotic actuator that enables the subsequent direct translation of natural articulation into a multi-segment ionic polymer metal composite actuator. It is demonstrated how the combination of optimal segmentation pattern and biologically derived per-segment driving signals reproduce natural cili- ary motion. The amenability of the artificial cilia to scaling is also demonstrated through the comparison of the Reynolds number achieved with that of natural cilia

    NASA NDE Applications for Mobile MEMS Devices and Sensors

    Get PDF
    NASA would like new devices and sensors for performing nondestructive evaluation (NDE) of aerospace vehicles. These devices must be small in size/volume, mass, and power consumption. The devices must be autonomous and mobile so they can access the internal structures of aircraft and spacecraft and adequately monitor the structural health of these craft. The platforms must be mobile in order to transport NDE sensors for evaluating structural integrity and determining whether further investigations will be required. Microelectromechanical systems (MEMS) technology is crucial to the development of the mobile platforms and sensor systems. This paper presents NASA s needs for micro mobile platforms and MEMS sensors that will enable NDE to be performed on aerospace vehicles

    A Snake-Inspired Multi-Segmented Magnetic Soft Robot Towards Medical Applications

    Get PDF
    Magnetically-actuated soft robots have potential for medical application but require further innovation on functionality and biocompatibility. In this letter, a multi-segmented snake-inspired soft robot with dissolvable and hiocompatible segments is designed. The actuation response under external magnetic field is investigated through simulations and experiments. A dissolve-controllable mixture of gelatin, glycerol and water (GGW) in a mass ratio of 1:5:6 is used to form the structure of the robot. The dissolution of GGW in water and mucus is tested. Magnetic cubes made of silicone rubber mixed with ferromagnetic particles are used to achieve snake-like motion under the influence of a rotating magnetic field. The motion of the robot is tested under different magnitudes and frequencies of the magnetic field. The ability of the robot to navigate obstacles, move over ground and under water as well as on the oil-coated surface, dissolve and release a drug is demonstrated through experiments. The combination of multi-segmented design and biocompatible and dissolvable materials illustrates the potential of such robots for medical applications

    Design, Actuation, and Functionalization of Untethered Soft Magnetic Robots with Life-Like Motions: A Review

    Full text link
    Soft robots have demonstrated superior flexibility and functionality than conventional rigid robots. These versatile devices can respond to a wide range of external stimuli (including light, magnetic field, heat, electric field, etc.), and can perform sophisticated tasks. Notably, soft magnetic robots exhibit unparalleled advantages among numerous soft robots (such as untethered control, rapid response, and high safety), and have made remarkable progress in small-scale manipulation tasks and biomedical applications. Despite the promising potential, soft magnetic robots are still in their infancy and require significant advancements in terms of fabrication, design principles, and functional development to be viable for real-world applications. Recent progress shows that bionics can serve as an effective tool for developing soft robots. In light of this, the review is presented with two main goals: (i) exploring how innovative bioinspired strategies can revolutionize the design and actuation of soft magnetic robots to realize various life-like motions; (ii) examining how these bionic systems could benefit practical applications in small-scale solid/liquid manipulation and therapeutic/diagnostic-related biomedical fields

    Biomimetics design for tribological applications

    Get PDF
    Biomimetics, biomimicry and bionics are synonyms for the scientific discipline of creating new structures inspired by nature. Biomimetics systematically analyses the evolutionary processes of living organisms, their structural relationships, the characteristics of natural materials and it studies how this knowledge can be used to create the optimal products and new sustainable materials. In the past decade, the biomimetics has received an incentive for the development by the technology modernization, and above all, by making it possible to study the micro-and nanolevels of biological structures. On the other hand, the miniaturization of technological devices has increased the need to understand the tribological phenomena on micro-and nanolevel, where is a huge potential for technological innovation. The integration of advanced research methods made it possible to discover new aspects in the structure and properties of biological materials and transfer that knowledge into new concepts or products. State-of-the-art of biomimetics progress is discussed, as well as, its goals and the potential to simultaneously achieve the financial and ecological contribution by realization of bio-inspired concepts. An overview of biomimetic researches is also provided, with special emphasis on the possibility of their tribological applications. The characteristic examples have been presented and those examples show how the structural and mechanical properties of the material were used as the basis for developing new creative solutions to solve the problem of friction in engineering applications

    Biomimetics design for tribological applications

    Get PDF
    Biomimetics, biomimicry and bionics are synonyms for the scientific discipline of creating new structures inspired by nature. Biomimetics systematically analyses the evolutionary processes of living organisms, their structural relationships, the characteristics of natural materials and it studies how this knowledge can be used to create the optimal products and new sustainable materials. In the past decade, the biomimetics has received an incentive for the development by the technology modernization, and above all, by making it possible to study the micro-and nanolevels of biological structures. On the other hand, the miniaturization of technological devices has increased the need to understand the tribological phenomena on micro-and nanolevel, where is a huge potential for technological innovation. The integration of advanced research methods made it possible to discover new aspects in the structure and properties of biological materials and transfer that knowledge into new concepts or products. State-of-the-art of biomimetics progress is discussed, as well as, its goals and the potential to simultaneously achieve the financial and ecological contribution by realization of bio-inspired concepts. An overview of biomimetic researches is also provided, with special emphasis on the possibility of their tribological applications. The characteristic examples have been presented and those examples show how the structural and mechanical properties of the material were used as the basis for developing new creative solutions to solve the problem of friction in engineering applications

    Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators

    Get PDF
    In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot onboard: power, actuation, processing, and control. At the core of the fish's soft body is an array of fluidic elastomer actuators. We design the fish to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum-body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared with studies on biological fish. We show that during escape responses, the soft-bodied robot has similar input–output relationships to those observed in biological fish. The major implication of this work is that we show soft robots can be both self-contained and capable of rapid body motion.National Science Foundation (U.S.) (NSF IIS1226883)National Science Foundation (U.S.) (NSF CCF1138967)National Science Foundation (U.S.) (1122374
    • …
    corecore