349 research outputs found

    Laboratory experiments of multi-phase plumes in stratification and crossflow

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2001.Includes bibliographical references (p. 227-233).ocean, with applications ranging from carbon sequestration to the fate of oil and gas released from an oil well blowout. Experimental techniques included LASER induced fluorescence, shadowgraph visualization, salinity and dye concentration profiling, stratification generated by the two-tank method (using a 1.2 m square by 2.4 m deep, glass-walled tank), and crossflow generated by a towed source (using a 28 m long flume with 0.8 m square cross-section). Size spectra of droplets and bubbles were measured using a phase Doppler particle analyzer. To control particle size, sediment was also used; sediment size was measured using a micrometer. Slip velocities among all buoyancy sources ranged from 3 to 35 cm/s. Stratified experiments investigated the dependence of plume properties on the nondimensional slip velocity, UN= us/(BN)1/4 , where u, is the slip velocity, B is the total kinematic buoyancy flux, and N is the Brunt-Vaissld buoyancy frequency. First, UN predicts the transitions among characteristic plume types, and a new plume type was identified where the bubbles are dispersed by the intruding fluid. Second, non-dimensional variables (including characteristic length scales, volume and buoyancy fluxes, and fraction peeled) correlate with UN and were chosen to provide insight and calibration data to models. Crossflow experiments demonstrated fractionation (sorting of bubbles based on slip velocity) and separation (entrained fluid completely separating from the dispersed phase). Plumes were observed to have a fully-developed plume stage followed by separation at a critical height, hs, dependent on B, us, and the crossflow velocity, u[infinity]. A single-phase model was applied to these plumes by treating the separated fluid as a buoyant momentum jet. Stratified crossflow experiments showed that separation occurs at the lower of hs or the peel height in stagnant stratification (which correlates with UN).by Scott A. Socolofsky.Ph.D

    Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 2203–2230, doi:10.1002/2015JC011452.This paper reports the results of quantitative imaging using a stereoscopic, high-speed camera system at two natural gas seep sites in the northern Gulf of Mexico during the Gulf Integrated Spill Research G07 cruise in July 2014. The cruise was conducted on the E/V Nautilus using the ROV Hercules for in situ observation of the seeps as surrogates for the behavior of hydrocarbon bubbles in subsea blowouts. The seeps originated between 890 and 1190 m depth in Mississippi Canyon block 118 and Green Canyon block 600. The imaging system provided qualitative assessment of bubble behavior (e.g., breakup and coalescence) and verified the formation of clathrate hydrate skins on all bubbles above 1.3 m altitude. Quantitative image analysis yielded the bubble size distributions, rise velocity, total gas flux, and void fraction, with most measurements conducted from the seafloor to an altitude of 200 m. Bubble size distributions fit well to lognormal distributions, with median bubble sizes between 3 and 4.5 mm. Measurements of rise velocity fluctuated between two ranges: fast-rising bubbles following helical-type trajectories and bubbles rising about 40% slower following a zig-zag pattern. Rise speed was uncorrelated with hydrate formation, and bubbles following both speeds were observed at both sites. Ship-mounted multibeam sonar provided the flare rise heights, which corresponded closely with the boundary of the hydrate stability zone for the measured gas compositions. The evolution of bubble size with height agreed well with mass transfer rates predicted by equations for dirty bubbles.Gulf of Mexico Research Initiativ

    Integral models for bubble, droplet, and multiphase plume dynamics in stratification and crossflow

    Get PDF
    We present the development and validation of a numerical modeling suite for bubble and droplet dynamics of multiphase plumes in the environment. This modeling suite includes real-fluid equations of state, Lagrangian particle tracking, and two different integral plume models: an Eulerian model for a double-plume integral model in quiescent stratification and a Lagrangian integral model for multiphase plumes in stratified crossflows. Here, we report a particle tracking algorithm for dispersed-phase particles within the Lagrangian integral plume model and a comprehensive validation of the Lagrangian plume model for single- and multiphase buoyant jets. The model utilizes literature values for all entrainment and spreading coefficients and has one remaining calibration parameter (Formula presented.), which reduces the buoyant force of dispersed phase particles as they approach the edge of a Lagrangian plume element, eventually separating from the plume as it bends over in a crossflow. We report the calibrated form (Formula presented.), where b is the plume half-width, and r is the distance of a particle from the plume centerline. We apply the validated modeling suite to simulate two test cases of a subsea oil well blowout in a stratification-dominated crossflow. These tests confirm that errors from overlapping plume elements in the Lagrangian integral model during intrusion formation for a weak crossflow are negligible for predicting intrusion depth and the fate of oil droplets in the plume. The Lagrangian integral model has the added advantages of being able to account for entrainment from an arbitrary crossflow, predict the intrusion of small gas bubbles and oil droplets when appropriate, and track the pathways of individual bubbles and droplets after they separate from the main plume or intrusion layer

    Transport, fate and impacts of the deep plume of petroleum hydrocarbons formed during the Macondo blowout

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bracco, A., Paris, C. B., Esbaugh, A. J., Frasier, K., Joye, S. B., Liu, G., Polzin, K. L., & Vaz, A. C. Transport, fate and impacts of the deep plume of petroleum hydrocarbons formed during the Macondo blowout. Frontiers in Marine Science, 7, (2020): 542147, doi:10.3389/fmars.2020.542147.The 2010 Macondo oil well blowout consisted in a localized, intense infusion of petroleum hydrocarbons to the deep waters of the Gulf of Mexico. A substantial amount of these hydrocarbons did not reach the ocean surface but remained confined at depth within subsurface plumes, the largest and deepest of which was found at ∼ 1000–1200 m of depth, along the continental slope (the deep plume). This review outlines the challenges the science community overcame since 2010, the discoveries and the remaining open questions in interpreting and predicting the distribution, fate and impact of the Macondo oil entrained in the deep plume. In the past 10 years, the scientific community supported by the Gulf of Mexico Research Initiative (GoMRI) and others, has achieved key milestones in observing, conceptualizing and understanding the physical oceanography of the Gulf of Mexico along its northern continental shelf and slope. Major progress has been made in modeling the transport, evolution and degradation of hydrocarbons. Here we review this new knowledge and modeling tools, how our understanding of the deep plume formation and evolution has evolved, and how research in the past decade may help preparing the scientific community in the event of a future spill in the Gulf or elsewhere. We also summarize briefly current knowledge of the plume fate – in terms of microbial degradation and geochemistry – and impacts on fish, deep corals and mammals. Finally, we discuss observational, theoretical, and modeling limitations that constrain our ability to predict the three-dimensional movement of waters in this basin and the fate and impacts of the hydrocarbons they may carry, and we discuss research priorities to overcome them.This review was made possible by funding from the Gulf of Mexico Research Initiative (GoMRI) and is a product of the Core Area 1 Synthesis workshop. The authors have contributed research on the Gulf deep circulation and the deep plume through GoMRI-funded consortia (ECOGIG for AB, SJ and GL, C-IMAGE for CP, AV and KF, and RECOVER for AE) and one of the RFP-5 grant (KP). KP was partially supported also by NSF OCE-1536779

    Ongoing methane discharge at well site 22/4b (North Sea)and discovery of a spiral vortex bubble plume motion

    Get PDF
    Highlights • Mega ebullition of biogenic methane from an abandoned offshore gas well, North Sea. • Evidence for midwater bubble plume intrusion, fallback, and short-circuiting of the plume. • Effective trapping of seabed released methane underneath the thermocline. • First observation of a spiral vortex methane plume and marginal turbulences. • Megaplumes appear less efficient in terms of vertical methane transport than previously thought. Abstract First direct evidence for ongoing gas seepage activity on the abandoned well site 22/4b (Northern North Sea, 57°55′ N, 01°38′ E) and discovery of neighboring seepage activity is provided from observations since 2005. A manned submersible dive in 2006 discovered several extraordinary intense seepage sites within a 60 m wide and 20 m deep crater cut into the flat 96 m deep seafloor. Capture and (isotope) chemical analyses of the gas bubbles near the seafloor revealed in situ concentrations of methane between 88 and 90%Vol. with δ13C–CH4 values around −74‰ VPDB, indicating a biogenic origin. Bulk methane concentrations throughout the water column were assessed by 120 Niskin water samples showing up to 400.000 nM CH4 in the crater at depth. In contrast, concentrations above the thermocline were orders of magnitude lower, with a median value of 20 nM. A dye tracer injection into the gas seeps revealed upwelling bubble and water motion with gas plume rise velocities up to ∼1 ms−1 (determined near the seabed). However, the dissolved dye did not pass the thermocline, but returned down to the seabed. Measurements of direct bubble-mediated atmospheric flux revealed low values of 0.7 ± 0.3 kty−1, much less than current state-of-the-art bubble dissolution models would predict for such a strong and upwelling in situ gas bubble flux at shallow water depths (i.e. ∼100 m). Acoustic multibeam water column imaging data indicate a pronounced 200 m lateral intrusion at the thermocline together with high methane concentration at this layer. A partly downward-orientated bubble plume motion is also visible in the acoustic data with potential short-circuiting in accordance to the dye experiment. This observation could partly explain the observed trapping of most of the released gas below the well-established thermocline in the North Sea. Moreover, 3D analyses of the multibeam water column data reveal that the upwelling plume transforms into a spiral expanding vortex while rising through the water column. Such a spiral vortex motion has never been reported before for marine gas seepage and might represent an important process with strong implication on plume dynamics, dissolution behavior, gas escape to the atmosphere, and is considered very important for respective modeling approaches

    Hydroacoustic and geochemical traces of marine gas seepage in the North Sea

    Get PDF
    Methane is the second most important anthropogenic greenhouse gas on Earth and contributes considerably to global radiative forcing. The last IPCC assessment report 2007 assigns geological methane emissions as a significant source. This thesis therefore concentrates on the quantity and atmospheric implications of methane emissions from the seabed of the North Sea. Sampling of marine seepage is challenging compared to readily accessible terrestrial sites; thus marine seepage sites have scarcely been observed or even yet discovered. Moreover, in terms of atmospheric contribution, the fate of methane after ebullition into the water column is usually not considered. Hydroacoustic systems have proven to be very efficient remote sensing tools for gas seepage analysis even in water depth greater than 2000 m. Technical progress led to much higher remote sensing potential by means of modern multibeam applications for gas bubbles detection in the water column. However, to be effective, these novel multibeam systems require new methods for data analysis. This thesis firstly demonstrates the application of multibeam systems as efficient gas bubble remote sensing tools. Therefore an anthropogenic blowout site was mapped using a multibeam sonar. The advantage of multibeam technology compared to singlebeam is increased efficiency due to larger coverage than singlebeam systems, three dimensional plume mapping, and exact localization of gas sources. Moreover the deployment of the multibeam prototype GasQuant is examined, which is an adapted sounder specifically designed for in situ gas bubble detection. GasQuant was deployed for several days within a gas seep field in the Central North Sea (Tommeliten). Aside from minor system adaptations, major effort was spent to handle the non-standard large datasets by means of various data processing and visualization routines. Taking into account the surrounding tidal current flow field, unique data patterns were extracted to unambiguously detect gas bubbles in the water column. Thus, a total of 52 single seep holes were localized and characterized with respect to their tempo-spatial variability. Recently, water column scanning multibeam mapping systems entered the market. Due to their huge amount of data output, manual processing is no longer feasible. Thus, a generic algorithm for the detection of rising gas bubbles in multibeam data was developed that accounts for the current tidal flow field for detection issues (Appendix A). Incorporation of other disciplines such as geochemistry and oceanography allowed for a methane gas source strength estimate of the Tommeliten gas seepage field in the North Sea. Combined acoustic mapping and in situ sampling revealed a source strength of ~0.8-4.8*106 mol/yr – a considerable quantity compared to prominent gas seep sites around the world (e.g. ~1*106 mol/yr at Vodyanitskii mud volcano, Black Sea; 2.19*106 mol/yr at North Hydrate Ridge offshore Oregon). Obviously previous studies have underestimated the area of active venting at Tommeliten. By modeling gas bubble dissolution and geochemical sampling it was found that the majority of bubble-mediated methane at Tommeliten already dissolves in the ‘deep’ water between the 70 m release depth and 40 m. Thus the methane is trapped below the upper-well mixed summer layer, from which it would readily be degassed by air-sea exchange processes. Given the heavy storm activity during winter, research cruises into the North Sea preferentially take place during the summer, where low atmospheric outgassing/emissions from seabed methane is expected due to stratification. However, considering the distinct hydrographic seasonal cycle of the North Sea, quantitative transport of seepage methane into the atmosphere seems likely during winter after fall mixing. This seasonal bias is not only constrained to the study site, but relevant for the entire Central and Northern North Sea as well as many mid-latitude shallow shelf sea waters showing temporal stratification

    Experimental and numerical characterization of multiphase subsurface oil release

    Get PDF
    Subsurface oil release is commonly encountered in the natural environment and engineering applications and has received the substantial attention of researchers after the disastrous Deepwater Horizon Blowout oil spill in 2009. The main focus on the present research is to systematically study the hydrodynamics of underwater oil jet under a variety of conditions, including the effect of dispersant and different gas to oil ratios (GOR) by using experimental measurement as well as a Computational Fluid Dynamics (CFD) approach, from which the measured turbulent characteristics (e.g., velocity, turbulent kinetic energy, turbulence dissipation rate, etc.) of underwater oil jet are thoroughly examined and compared. A Lagrangian Particle Tracking Model that coupled with CFD data is used to simulate the trajectories and movement of individual oil droplets under the effect of turbulence and comprehensive physical forces. The trajectories of oil droplets can be very different depending on the droplet diameter and physical force condition, which may bring insight into understanding the fate of oil droplets after the oil release. Large Eddy Simulation (LES) suggests that the oil and gas jet in the Deepwater Horizon Blowout can be churn rather than bubbly, which provides new perspectives on the estimation of the total oil flow rate during the blowout as well as the evaluation of dispersant effectiveness. Furthermore, a laboratory scale multiphase jet experiment by using Particle Imaging Velocimetry (PIV) as well as CFD simulation is conducted to understand and compare the hydrodynamics between the bubbly and churn jets, which shows that the churn jet may result in more entrainment from the ambient environment compared with the bubbly jet

    INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    Full text link

    Effects of buoyancy source composition on multiphase plume behavior in stratification

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2004.Includes bibliographical references (p. 173-179).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Experiments are performed where a dense multiphase plume is released vertically in a salinity stratified ambient. The constituent phase composition of the initial buoyancy flux can be dense brine, particles, or a mixture of the two in a prescribed ratio. The resulting trapping heights and peeling depths are recorded by visual acquisition and from dye fluorescence measurements. Also, the radial concentration distribution of the dispersed phase after the first peeling event is obtained by collecting the settled particles from the bottom of the tank. Analytical models assuming plug flow and well-mixed particle distributions within the intrusion layer are used to predict the spread of the particle distribution based on initial buoyancy flux, momentum flux, stratification parameter and particle fall velocity. The effects of initial momentum and volume flux on peel and trap depths were studied by comparing the predictions from these models. Finally the observed results are compared to a single-phase plume numerical prediction (CORMIX) and a multiphase numerical plume model. Observed peeling depths were not sensitive to buoyancy composition, while observed trap depths decreased slightly with high particle fractions, possibly from the 'lift-off' phenomenon where particle fallout decreases the bulk buoyancy of the intrusion layer. The observed radial distribution was Gaussian, consistent with particles being vertially well mixed in the intrusion layer, and the standard deviation agreed well with predictions.by Aaron C. Chow.S.M
    • …
    corecore