520 research outputs found

    Graphene Based Metamaterials For Terahertz Cloaking And Subwavelength Imaging

    Get PDF
    Graphene is a two-dimensional carbon crystal that became one of the most controversial topics of research in the last few years. The intense interest in graphene stems from recent demonstrations of their potentially revolutionary electromagnetic applications – including negative refraction, subdiffraction imaging, and even invisibility – which have suggested a wide range of new devices for communications, sensing, and biomedicine. In addition, it has been shown that graphene is amenable to unique patterning schemes such as cutting, bending, folding, and fusion that are predicted to lead to interesting properties. A recent proposed application of graphene is in engineering the scattering properties of objects, which may be leveraged in applications such as radar-cross-section management and stealth, where it may be required to make one object look like another object or render an object completely invisible. We present the analytical formulation for the analysis of electromagnetic interaction with a finite conducting wedge covered with a cylindrically shaped nanostructured graphene metasurface, resulting in the scattering cancellation of the dominant scattering mode for all the incident and all the observation angles. Following this idea, the cylindrical graphene metasurface is utilized for cloaking of several concentric finite conducting wedges. In addition, a wedge shaped metasurface is proposed as an alternative approach for cloaking of finite wedges. The resolution of the conventional imaging lenses is restricted by the natural diffraction limit. Artificially engineered metamaterials now offer the possibility of creating a superlens that overcomes this restriction. We demonstrate that a wire medium (WM) slab loaded with graphene sheets enables the enhancement of the near field for subwavelength imaging at terahertz (THz) frequencies. The analysis is based on the nonlocal homogenization model for WM with the additional boundary condition in the connection of wires to graphene. The principle of the operation of the proposed lens depends on the enhancement of evanescent waves, wherein the excited surface plasmons at the lower and upper graphene interfaces are coupled by an array of metallic wires. The resolution and the operating frequency of the subwavelength imaging device are mainly determined by the tunability of graphene and the structural parameters of the WM slab. The proposed structure has a resolution better than λ/10 with the advantages of broad bandwidth, low sensitivity to losses, and tunability with respect to the chemical potential even if the distance between two graphene sheets is a significant fraction of wavelength. As a supplementary study, the performance of WM slab loaded with nanostructured graphene metasurfaces as a novel sub-diffraction imaging lens is studied. It is observed that the dual nature (capacitive/inductive) of the nanostructured graphene metasurface can be utilized to design a dual-band lens in which the subwavelength imaging simultaneously at two tunable distinct frequencies is possible. The analytical results which are presented throughout this thesis, are validated with the full-wave electromagnetic simulator, CST Microwave Studio

    Proposal for nanoscale cascaded plasmonic majority gates for non-Boolean computation

    Full text link
    Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality - the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 {\mu}m2^2 for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.Comment: Supplementary information include

    Proposal for nanoscale cascaded plasmonic majority gates for non-Boolean computation

    Full text link
    Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality - the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 {\mu}m2^2 for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.Comment: Supplementary information include
    • …
    corecore