1,739 research outputs found

    Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy

    Full text link
    Automated label-free quantitative imaging of biological samples can greatly benefit high throughput diseases diagnosis. Digital holographic microscopy (DHM) is a powerful quantitative label-free imaging tool that retrieves structural details of cellular samples non-invasively. In off-axis DHM, a proper spatial filtering window in Fourier space is crucial to the quality of reconstructed phase image. Here we describe a region-recognition approach that combines shape recognition with an iterative thresholding to extracts the optimal shape of frequency components. The region recognition technique offers fully automated adaptive filtering that can operate with a variety of samples and imaging conditions. When imaging through optically scattering biological hydrogel matrix, the technique surpasses previous histogram thresholding techniques without requiring any manual intervention. Finally, we automate the extraction of the statistical difference of optical height between malaria parasite infected and uninfected red blood cells. The method described here pave way to greater autonomy in automated DHM imaging for imaging live cell in thick cell cultures

    Two-color holography concept (T-CHI)

    Get PDF
    The Material Processing in the Space Program of NASA-MSFC was active in developing numerous optical techniques for the characterization of fluids in the vicinity of various materials during crystallization and/or solidification. Two-color holographic interferometry demonstrates that temperature and concentration separation in transparent (T-CHI) model systems is possible. The experiments were performed for particular (succinonitrile) systems. Several solutions are possible in Microgravity Sciences and Applications (MSA) experiments on future Shuttle missions. The theory of the T-CHI concept is evaluated. Although particular cases are used for explanations, the concepts developed will be universal. A breadboard system design is also presented for ultimate fabrication and testing of theoretical findings. New developments in holography involving optical fibers and diode lasers are also incorporated

    Three dimensional optical profilometry using a four-core optical fiber

    Get PDF
    This study describes the use of a four-core optical fiber for the first time for measurements of three-dimensional rigid-body shapes. A fringe pattern, which was generated by the interference of four wavefronts emitted from the four-core optical fiber, was projected on an object's surface. The deformed fringe pattern containing the information of the objects height was captured by a digital CCD camera. The twodimensional Fourier transformation was applied to the image, which was digitized by using a frame grabber. After filtering this data in its spatial frequency domain by applying a bandpass filter, the two-dimensional inverse Fourier transformation was applied. A phaseunwrapping algorithm was applied to convert this discontinuous phase data to a continuous one. Finally, the shape information of the object was determined. The two-dimensional Fourier transformation analysis used in this study permitted a better signal separation and a better noise reduction. Compared to other optical profilometry techniques, which are based on fiber optics, the use of a four-core optical fiber in this study ruled out the necessity for using a fiber coupler and the alignment of fiber ends. Thus, it increased the compactness and the stability of the fringe projection system

    Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy.

    Get PDF
    Lensfree in-line holographic microscopy offers sub-micron resolution over a large field-of-view (e.g., ~24 mm2) with a cost-effective and compact design suitable for field use. However, it is limited to relatively low-density samples. To mitigate this limitation, we demonstrate an on-chip imaging approach based on pixel super-resolution and phase recovery, which iterates among multiple lensfree intensity measurements, each having a slightly different sample-to-sensor distance. By digitally aligning and registering these lensfree intensity measurements, phase and amplitude images of dense and connected specimens can be iteratively reconstructed over a large field-of-view of ~24 mm2 without the use of any spatial masks. We demonstrate the success of this multi-height in-line holographic approach by imaging dense Papanicolaou smears (i.e., Pap smears) and blood samples

    Investigation of Real-Time Optical Scanning Holography

    Get PDF
    Real-time holographic recording using an optical heterodyne scanning technique was proposed by Poon in 1985. The first part of this dissertation provides a detailed theoretical treatment of the technique, based on a Gaussian beam analysis. Topics to be addressed include the derivations of the optical transfer function (OTF) and impulse response of the scanning holographic recording system, reconstructed image resolution and magnification, methods of carrier frequency hologram generation and experimental verification of the recording technique based on careful measurements of a hologram corresponding to a simple transmissive slit. Furthermore, computer simulations are presented pertaining to the incoherent nature of the scanning holographic process and it is shown that this new technique can be used to reduce the effects of bias buildup common in conventional incoherent holographic methods. The reconstruction of holograms generated by the heterodyne scanning technique is then considered in the second part of the dissertation. The primary concentration is on real-time reconstruction using an electron beam addressed spatial light modulator (EBSLM). For comparison, experimental coherent reconstruction methods are presented as well. Additional topics to be addressed are the spatial frequency limitations of the EBSLM and the derivation of the overall incoherent point spread function (PSF) for the holographic imaging (recording/reconstruction) system. Based upon the derived overall PSF, the reconstructed real image of a simple slit object is formulated, compared to, and shown to be consistent with experimental observations

    COMPRESSIVE IMAGING AND DUAL MOIRE´ LASER INTERFEROMETER AS METROLOGY TOOLS

    Get PDF
    Metrology is the science of measurement and deals with measuring different physical aspects of objects. In this research the focus has been on two basic problems that metrologists encounter. The first problem is the trade-off between the range of measurement and the corresponding resolution; measurement of physical parameters of a large object or scene accompanies by losing detailed information about small regions of the object. Indeed, instruments and techniques that perform coarse measurements are different from those that make fine measurements. This problem persists in the field of surface metrology, which deals with accurate measurement and detailed analysis of surfaces. For example, laser interferometry is used for fine measurement (in nanometer scale) while to measure the form of in object, which lies in the field of coarse measurement, a different technique like moire technique is used. We introduced a new technique to combine measurement from instruments with better resolution and smaller measurement range with those with coarser resolution and larger measurement range. We first measure the form of the object with coarse measurement techniques and then make some fine measurement for features in regions of interest. The second problem is the measurement conditions that lead to difficulties in measurement. These conditions include low light condition, large range of intensity variation, hyperspectral measurement, etc. Under low light condition there is not enough light for detector to detect light from object, which results in poor measurements. Large range of intensity variation results in a measurement with some saturated regions on the camera as well as some dark regions. We use compressive sampling based imaging systems to address these problems. Single pixel compressive imaging uses a single detector instead of array of detectors and reconstructs a complete image after several measurements. In this research we examined compressive imaging for different applications including low light imaging, high dynamic range imaging and hyperspectral imaging
    corecore