574 research outputs found

    Exploiting the 2-Amino-1,3,4-thiadiazole Scaffold To Inhibit <i>Trypanosoma brucei </i>Pteridine Reductase in Support of Early-Stage Drug Discovery

    Get PDF
    Pteridine reductase-1 (PTR1) is a promising drug target for the treatment of trypanosomiasis. We investigated the potential of a previously identified class of thiadiazole inhibitors of Leishmania major PTR1 for activity against Trypanosoma brucei (Tb). We solved crystal structures of several TbPTR1-inhibitor complexes to guide the structure-based design of new thiadiazole derivatives. Subsequent synthesis and enzyme- and cell-based assays confirm new, mid-micromolar inhibitors of TbPTR1 with low toxicity. In particular, compound 4m, a biphenyl-thiadiazole-2,5-diamine with IC50 = 16 ÎĽM, was able to potentiate the antitrypanosomal activity of the dihydrofolate reductase inhibitor methotrexate (MTX) with a 4.1-fold decrease of the EC50 value. In addition, the antiparasitic activity of the combination of 4m and MTX was reversed by addition of folic acid. By adopting an efficient hit discovery platform, we demonstrate, using the 2-amino-1,3,4-thiadiazole scaffold, how a promising tool for the development of anti-T. brucei agents can be obtained

    Machine vision-assisted analysis of structure-localization relationships in a combinatorial library of prospective bioimaging probes

    Full text link
    With a combinatorial library of bioimaging probes, it is now possible to use machine vision to analyze the contribution of different building blocks of the molecules to their cell-associated visual signals. For this purpose, cell-permeant, fluorescent styryl molecules were synthesized by condensation of 168 aldehyde with 8 pyridinium/quinolinium building blocks. Images of cells incubated with fluorescent molecules were acquired with a high content screening instrument. Chemical and image feature analysis revealed how variation in one or the other building block of the styryl molecules led to variations in the molecules' visual signals. Across each pair of probes in the library, chemical similarity was significantly associated with spectral and total signal intensity similarity. However, chemical similarity was much less associated with similarity in subcellular probe fluorescence patterns. Quantitative analysis and visual inspection of pairs of images acquired from pairs of styryl isomers confirm that many closely-related probes exhibit different subcellular localization patterns. Therefore, idiosyncratic interactions between styryl molecules and specific cellular components greatly contribute to the subcellular distribution of the styryl probes' fluorescence signal. These results demonstrate how machine vision and cheminformatics can be combined to analyze the targeting properties of bioimaging probes, using large image data sets acquired with automated screening systems. © 2009 International Society for Advancement of CytometryPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63004/1/20713_ftp.pd

    Classifying and scoring of molecules with the NGN: new datasets, significance tests, and generalization

    Get PDF
    <p>Abstract</p> <p/> <p>This paper demonstrates how a Neural Grammar Network learns to classify and score molecules for a variety of tasks in chemistry and toxicology. In addition to a more detailed analysis on datasets previously studied, we introduce three new datasets (BBB, FXa, and toxicology) to show the generality of the approach. A new experimental methodology is developed and applied to both the new datasets as well as previously studied datasets. This methodology is rigorous and statistically grounded, and ultimately culminates in a Wilcoxon significance test that proves the effectiveness of the system. We further include a complete generalization of the specific technique to arbitrary grammars and datasets using a mathematical abstraction that allows researchers in different domains to apply the method to their own work.</p> <p>Background</p> <p>Our work can be viewed as an alternative to existing methods to solve the quantitative structure-activity relationship (QSAR) problem. To this end, we review a number approaches both from a methodological and also a performance perspective. In addition to these approaches, we also examined a number of chemical properties that can be used by generic classifier systems, such as feed-forward artificial neural networks. In studying these approaches, we identified a set of interesting benchmark problem sets to which many of the above approaches had been applied. These included: ACE, AChE, AR, BBB, BZR, Cox2, DHFR, ER, FXa, GPB, Therm, and Thr. Finally, we developed our own benchmark set by collecting data on toxicology.</p> <p>Results</p> <p>Our results show that our system performs better than, or comparatively to, the existing methods over a broad range of problem types. Our method does not require the expert knowledge that is necessary to apply the other methods to novel problems.</p> <p>Conclusions</p> <p>We conclude that our success is due to the ability of our system to: 1) encode molecules losslessly before presentation to the learning system, and 2) leverage the design of molecular description languages to facilitate the identification of relevant structural attributes of the molecules over different problem domains.</p
    • …
    corecore