28,063 research outputs found

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)

    Recent advances in coherent optics. Filtering of spatial frequencies, holography

    Get PDF
    Applications of coherent light in areas of spatial filtering and holograph

    Learning SO(3) Equivariant Representations with Spherical CNNs

    Full text link
    We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard retrieval and classification benchmarks.Comment: Camera-ready. Accepted to ECCV'18 as oral presentatio

    Function-based Intersubject Alignment of Human Cortical Anatomy

    Get PDF
    Making conclusions about the functional neuroanatomical organization of the human brain requires methods for relating the functional anatomy of an individual's brain to population variability. We have developed a method for aligning the functional neuroanatomy of individual brains based on the patterns of neural activity that are elicited by viewing a movie. Instead of basing alignment on functionally defined areas, whose location is defined as the center of mass or the local maximum response, the alignment is based on patterns of response as they are distributed spatially both within and across cortical areas. The method is implemented in the two-dimensional manifold of an inflated, spherical cortical surface. The method, although developed using movie data, generalizes successfully to data obtained with another cognitive activation paradigm—viewing static images of objects and faces—and improves group statistics in that experiment as measured by a standard general linear model (GLM) analysis

    3D Camouflaging Object using RGB-D Sensors

    Full text link
    This paper proposes a new optical camouflage system that uses RGB-D cameras, for acquiring point cloud of background scene, and tracking observers eyes. This system enables a user to conceal an object located behind a display that surrounded by 3D objects. If we considered here the tracked point of observer s eyes is a light source, the system will work on estimating shadow shape of the display device that falls on the objects in background. The system uses the 3d observer s eyes and the locations of display corners to predict their shadow points which have nearest neighbors in the constructed point cloud of background scene.Comment: 6 pages, 12 figures, 2017 IEEE International Conference on SM

    Object recognition using shape-from-shading

    Get PDF
    This paper investigates whether surface topography information extracted from intensity images using a recently reported shape-from-shading (SFS) algorithm can be used for the purposes of 3D object recognition. We consider how curvature and shape-index information delivered by this algorithm can be used to recognize objects based on their surface topography. We explore two contrasting object recognition strategies. The first of these is based on a low-level attribute summary and uses histograms of curvature and orientation measurements. The second approach is based on the structural arrangement of constant shape-index maximal patches and their associated region attributes. We show that region curvedness and a string ordering of the regions according to size provides recognition accuracy of about 96 percent. By polling various recognition schemes. including a graph matching method. we show that a recognition rate of 98-99 percent is achievable
    corecore