2,012 research outputs found

    Modelling the influence of sub-grade material parameters on the response of railway line under moving train loads

    Get PDF
    The sub-grade of the railway track subjected to dynamic loading is governed by its dynamic material parameters, the basic dynamic material parameters are unit weight, Young’s modulus, Poisson’s ratio and the material damping. However, there is a need to identify the parameters of the sub-grade that has significant effect on the dynamic response of the railway track to achieve the specified technical requirements because the behavior of the sub-grade cannot be easily estimated or verified. Hence, this paper uses three-dimensional finite elements ABAQUS coupled with Artificial Non-Reflecting Boundary to investigate the effect of varying the unit weight, Young’s modulus, Poisson's ratio and the damping ratio of the sub-grade in the surface vibration induced at the embankment railway track in terms of Peak Vertical Velocity due to moving of the train loads. The input soil parameters used are soft clay, stiff clay, loose and dense uniform sand to demonstrate the parametric study. The predicated results show that both the Young’s modulus and damping ratio of the sub-grade have quite significant effect on the induced surface vibrations of railway track; while the influence of both unit weight and Poisson’s ratio are very small. Hence to fulfill the technical requirement of the railway track, special attention regarding to the Young’s modulus and the damping ratio of the sub-grade should be paid

    A time domain analysis of train induced vibrations

    Get PDF
    This paper is intended to show the robustness and capabilities of a coupled Boundary Element-Finite Element technique for the analysis of vibrations generated by high-speed trains under different geometrical, mechanical and operation conditions. The approach has been developed by the authors and some results have already been presented. Nevertheless, a more comprehensive study is presented in this paper to show the relevance and robustness of the method which is able to predict vibrations due to train passage at the vehicle, the track, the free-field and any structure close to the track. Local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line can be represented by the model. Non-linear behaviour of the structures can be also considered. Results concerning the excitation mechanisms, track behaviour and sub-Rayleigh and super-Rayleigh train speed are summarized in this work.Ministerio de Ciencia e Innovación BIA2010-1484

    Design of ballasted railway track foundations using numerical modelling with special reference to high speed trains

    Get PDF
    A new design method for ballasted railway track foundations was developed based on improved empirical models and sophisticated three-dimensional finite element numerical analyses. The method was developed in the form of simple design charts for use by practitioners. The results obtained from the method were found to be in an excellent agreement with the field observations, and the method is expected to provide a significant contribution to the current railway tack design code of practice

    The effect of tunnel construction on future underground railway vibrations

    Get PDF
    This paper investigates the effect of initial tunnel construction on the future ground vibration levels generated during underground railway line operation. This is important because tunnel construction results in soil disturbance, thus inducing high soil strain levels near the tunnel lining. The resulting soil stiffness degradation impacts the future generation of ground-borne traffic vibration and it's propagation to the foundations of nearby buildings, however has never been investigated. Therefore, to address this, this work develops a novel hybrid modelling approach, consisting of a construction simulation model and an elastodynamics model. First the convergence-confinement method is used to determine the stress state induced during tunnel construction using a tunnel boring machine (TBM). Next a 2.5D FEM-PML model consisting of vehicle-track-tunnel-soil is used to predict the vibration fields induced by underground trains. To link the approaches, the soil stiffness degradation contours computed from the tunnelling simulation act as inputs for the 2.5D underground railway model. This facilitates the assessment of the effect of tunnel construction on vibration levels. It is found that railway ground-borne vibration levels are underestimated if construction effects are ignored, with discrepancies of up to 10 dB found at higher frequencies. Therefore, when estimating future vibration levels during the underground railway design stage (e.g. for subway, metro, high-speed lines … etc), tunnel construction should be considered as an operational source of uncertainty

    Train-induced dynamic response of railway track and embankments on soft peaty foundations

    Get PDF
    The mainline railway track between Dublin and Belfast in Northern Ireland was constructed during the 1850's. Substantial lengths of railway embankment were constructed over poor-quality peaty soils. This was accomplished using tree trunk fascines placed directly on the natural ground surface; with poor-quality local peaty soils used as light weight fill.In recent years, Northern Ireland Railways have noticed that these sections of railway track have been deteriorating more rapidly than sections of the track where the foundations are more competent. The magnitudes of displacement of the track under train loading appear to be increasing gradually over time and train speeds have had to be reduced.This thesis is based on the research done to monitor the response of these railway track and embankment structures to dynamic train loading. The displacements were monitored for two different embankments under a variety of loading conditions and for various seasonal conditions. These displacements were recorded using a sensor created for this task. The sensor consisted of a photo-sensitive array mounted on the sleepers and a laser, which was placed outside the area of influence of train loading, and shone on the photo-sensitive array. Analytical (Winkler) modelling was conducted to determine the effects of train speed and the cause of the large train-induced displacements. Analytical and finite element modelling were used to determine the effectiveness of alternative methods of embankment stabilization.The results from the analytical modelling suggest that the deformation of the embankment under train loading was not due to dynamic excitation, but static deformation of the poor-quality fill and soft foundation materials. From both the analytical and finite element modelling of possible remediation techniques, methods that stiffen the embankment and foundation material are shown to be the most effective at reducing the train induced deflection of the embankment

    Railway-induced ground vibrations – a review of vehicle effects

    Get PDF
    This paper is a review of the effect of vehicle characteristics on ground- and track borne-vibrations from railways. It combines traditional theory with modern thinking and uses a range of numerical analysis and experimental results to provide a broad analysis of the subject area. First, the effect of different train types on vibration propagation is investigated. Then, despite not being the focus of this work, numerical approaches to vibration propagation modelling within the track and soil are briefly touched upon. Next an in-depth discussion is presented related to the evolution of numerical models, with analysis of the suitability of various modelling approaches for analysing vehicle effects. The differences between quasi-static and dynamic characteristics are also discussed with insights into defects such as wheel/rail irregularities. Additionally, as an appendix, a modest database of train types are presented along with detailed information related to their physical attributes. It is hoped that this information may provide assistance to future researchers attempting to simulate railway vehicle vibrations. It is concluded that train type and the contact conditions at the wheel/rail interface can be influential in the generation of vibration. Therefore, where possible, when using numerical approach, the vehicle should be modelled in detail. Additionally, it was found that there are a wide variety of modelling approaches capable of simulating train types effects. If non-linear behaviour needs to be included in the model, then time domain simulations are preferable, however if the system can be assumed linear then frequency domain simulations are suitable due to their reduced computational demand

    Fully three-dimensional analysis of high-speed traintracksoil-structure dynamic interaction

    Get PDF
    In this paper, a general and fully three dimensional multi-body-finite element-boundary element model, formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using finite elements. The soil is considered as a homogeneous half-space by the boundary element method. This methodology could be used to take into account local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line. The nonlinear behaviour of the structures could be also considered. In the present paper, in order to test the model, vibrations induced by high-speed train passage are evaluated for a ballasted track. The quasi-static and dynamic load components are studied and the influence of the suspended mass on the vertical loads is analyzed. The numerical model is validated by comparison with experimental records from two HST lines. Finally, the dynamic behaviour of a transition zone between a ballast track and a slab track is analyzed and the obtained results from the proposed model are compared with those obtained from a model with invariant geometry with respect to the track direction.Ministerio de Educación y Ciencia BIA2007-67612-C02-02CEDEX PT-2006-024-19CCP

    CONTRIBUTION TO THE MODELIZATION, ANALYTICAL AND NUMERICAL, OF GENERATION AND PROPAGATION OF VIBRATIONS ORIGINATED BY RAILWAY TRAFFIC. ANALYSIS OF MITIGATION PROPOSALS

    Full text link
    Tesis por compendioReal Herráiz, JI. (2015). CONTRIBUTION TO THE MODELIZATION, ANALYTICAL AND NUMERICAL, OF GENERATION AND PROPAGATION OF VIBRATIONS ORIGINATED BY RAILWAY TRAFFIC. ANALYSIS OF MITIGATION PROPOSALS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/52247TESISCompendi

    Long-term behaviour of railway transitions under dynamic loading application to soft soil sites

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia CivilTransition zones in railway tracks are built to mitigate damage and wear to tracks and trains, and discomfort to passengers, caused by structural and foundation discontinuities, such as those introduced by bridge approaches or culverts. However, additional strains are still generated that cause changes of track geometry, that lead to more frequent maintenance operations and sometimes speed restrictions, that raise costs, and need to be minimized. This thesis addresses those questions and describes research undertaken to model the dynamic response of the railway tracks, taking into account the behaviour of ballast at the aforementioned railway transition zones, where the long-term settlements are amplified by dynamical loading on the ballast due to the discontinuities. Novel numerical models for the simulation of the dynamic response of the system soilballast-track-vehicle and accounting for those phenomena are presented. The models are validated by field measurements performed at a passage over a culvert, located in a soft soil site. The models include the unloaded level of the track, the possibility of voids under the sleepers, and the non-linear constitutive behaviour of the ballast, as well as representation, albeit simplified, of the vehicles. The forces transmitted to the ballast at transition areas vary considerably, both in time and space: loading of ballast reaches higher values than in regular tracks, and the additional vibrations cause larger differences between loads transmitted to consecutive sleepers. This causes higher densification of ballast at transition zones. Transition zones solely composed of approach slabs are not effective in soft soil sites. The soil and ballast at approach regions settle more than the segment on top of the much stiffer structure, leading to the appearance of hanging sleepers. The subsequent combined effect of lower load on part of the ballast and motion of the approach slabs results on increased settlement of the ballast and sub-ballast, increasing the voids under the sleepers, and causing more severe actions on the track. Possible improvement measures were modeled and tested computationally at the later stages of the thesis. The numerical simulations showed that the use of soft railpads on the stiff side of the transition is beneficial, provided the problem is mostly caused by stiffness variation of the track support. Slab track solution was also tested and showed advantages over the ballasted track by showing much smaller differential rail displacements,for identical change of the track support stiffness.Fundação para a Ciência e Tecnologia - Ph.D grant (SFRH/BD/25297/2005), through the project “Interacção solo-via férrea para comboios de alta velocidade” (POCI/ECM/61114/2004), and through the project SMARTRACK (PTDC/EME-PME/101419/2008

    Comparison of 2D and 3D prediction models for environmental vibration induced by underground railway with two types of tracks

    Get PDF
    Two-dimensional (2D) and three-dimensional (3D) prediction models for environmental vibration induced by underground railway with direct fixation track and steel spring floating slab track are developed and verified. The responses of ground surface calculated by 2D prediction models with various equivalent forces are compared to those calculated by 3D prediction models. The numerical results show that (a) the computational time for each case calculated by 2D prediction models is more than 500 times less than that calculated by 3D prediction models, however, the accuracy of 2D prediction models is relatively lower than 3D prediction models, so 3D prediction models are required for absolute prediction due to their higher accuracy and applicability to a wider range of complex problems; and (b) a suitable equivalent force transfer method for 2D prediction models can improve the prediction accuracy of 2D prediction models, the equivalent forces in 2D prediction models are respectively recommended to use the equivalent wheel-rail force and the equivalent steel spring force averaged over a vehicle length for underground direct fixation track and steel spring floating slab trac
    corecore