49,579 research outputs found

    Human motion modeling and simulation by anatomical approach

    Get PDF
    To instantly generate desired infinite realistic human motion is still a great challenge in virtual human simulation. In this paper, the novel emotion effected motion classification and anatomical motion classification are presented, as well as motion capture and parameterization methods. The framework for a novel anatomical approach to model human motion in a HTR (Hierarchical Translations and Rotations) file format is also described. This novel anatomical approach in human motion modelling has the potential to generate desired infinite human motion from a compact motion database. An architecture for the real-time generation of new motions is also propose

    On singular values decomposition and patterns for human motion analysis and simulation

    Get PDF
    We are interested in human motion characterization and automatic motion simulation. The apparent redun- dancy of the humanoid w.r.t its explicit tasks lead to the problem of choosing a plausible movement in the framework of redun- dant kinematics. This work explores the intrinsic relationships between singular value decomposition at kinematic level and optimization principles at task level and joint level. Two task- based schemes devoted to simulation of human motion are then proposed and analyzed. These results are illustrated by motion captures, analyses and task-based simulations. Pattern of singular values serve as a basis for a discussion concerning the similarity of simulated and real motions

    Robust Execution of Contact-Rich Motion Plans by Hybrid Force-Velocity Control

    Full text link
    In hybrid force-velocity control, the robot can use velocity control in some directions to follow a trajectory, while performing force control in other directions to maintain contacts with the environment regardless of positional errors. We call this way of executing a trajectory hybrid servoing. We propose an algorithm to compute hybrid force-velocity control actions for hybrid servoing. We quantify the robustness of a control action and make trade-offs between different requirements by formulating the control synthesis as optimization problems. Our method can efficiently compute the dimensions, directions and magnitudes of force and velocity controls. We demonstrated by experiments the effectiveness of our method in several contact-rich manipulation tasks. Link to the video: https://youtu.be/KtSNmvwOenM.Comment: Proceedings of IEEE International Conference on Robotics and Automation (ICRA2019

    An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking

    Get PDF
    Walking is a constrained movement which may best be observed during the double stance phase when both feet contact the floor. When analyzing a measured movement with an inverse dynamics model, a violation of these constrains will always occur due to measuring errors and deviations of the segments model from reality, leading to inconsistent results. Consistency is obtained by implementing the constraints into the model. This makes it possible to combine the inverse dynamics model with optimization techniques in order to predict walking patterns or to reconstruct non-measured rotations when only a part of the three-dimensional joint rotations is measured. In this paper the outlines of the extended inverse dynamics method are presented, the constraints which define walking are defined and the optimization procedure is described. The model is applied to analyze a normal walking pattern of which only the hip, knee and ankle flexions/extensions are measured. This input movement is reconstructed to a kinematically and dynamically consistent three-dimensional movement, and the joint forces (including the ground reaction forces) and joint moments of force, needed to bring about this movement are estimated

    Reducing “Structure from Motion”: a general framework for dynamic vision. 1. Modeling

    Get PDF
    The literature on recursive estimation of structure and motion from monocular image sequences comprises a large number of apparently unrelated models and estimation techniques. We propose a framework that allows us to derive and compare all models by following the idea of dynamical system reduction. The “natural” dynamic model, derived from the rigidity constraint and the projection model, is first reduced by explicitly decoupling structure (depth) from motion. Then, implicit decoupling techniques are explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such a function, not only can we account for models seen so far in the literature, but we can also derive novel ones
    corecore