373,366 research outputs found

    Universal Three Dimensional Optical Logic

    Full text link
    Modern integrated circuits are essentially two-dimensional (2D). Partial three-dimensional (3D) integration and 3D-transistor-level integrated circuits have long been anticipated as routes to improve the performance, cost and size of electronic computing systems. Even as electronics approach fundamental limits however, stubborn challenges in 3D circuits, and innovations in planar technology have delayed the dimensional transition. Optical computing offers potential for new computing approaches, substantially greater performance and would complement technologies in optical interconnects and data storage. Nevertheless, despite some progress, few proposed optical transistors possess essential features required for integration into real computing systems. Here we demonstrate a logic gate based on universal features of nonlinear wave propagation: spatiotemporal instability and collapse. It meets the scaling criteria and enables a 3D, reconfigurable, globally-hyperconnected architecture that may achieve an exponential speed up over conventional platforms. It provides an attractive building block for future optical computers, where its universality should facilitate flexible implementations.Comment: manuscript (5 pages, 3 figures) with supplementary information (6 pages, 5 figures

    Thermal modeling and analysis of advanced 3D stacked structures

    Get PDF
    AbstractThe emerging three-dimensional integrated circuits (3D ICs) offer a promising solution to mitigate the barriers of interconnect scaling in modern systems. It also provides greater design flexibility by allowing heterogeneous integration. However, 3D technology exacerbates the on-chip thermal issues and increases packaging and cooling costs. In this work, a 3D thermal model of a stacked system is developed and thermal analysis is performed in order to analyze different workload conditions using finite element simulations. The steady-state heat transfer analysis on the 3D stacked structure has been performed in order to analyze the effect of variation of die power consumption, with and without hotspots, on temperature in different layers of the stack has been analyzed. We have also investigated the effect of the interaction of hotspots has on peak temperature

    Physical Aspects of VLSI Design with a Focus on Three-Dimensional Integrated Circuit Applications

    Get PDF
    This work is on three-dimensional integration (3DI), and physical problems and aspects of VLSI design. Miniaturization and highly complex integrated systems in microelectronics have led to the 3DI development as a promising technological approach. 3DI offers numerous advantages: Size, power consumption, hybrid integration etc., with more thermal problems and physical complexity as trade-offs. We open this work by presenting the design and testing of an example 3DI system, to our knowledge the first self-powering system in a three-dimensional SOI technology. The system uses ambient optical energy harvested by a photodiode array and stored in an integrated capacitor. An on-chip metal interconnect network, beyond its designed role, behaves as a parasitic load vulnerable to electromagnetic coupling. We have developed a spatially-dependent, transient Green's Function based method of calculating the response of an interconnect network to noise. This efficient method can model network delays and noise sensitivity, which are involved problems in both planar and especially in 3DICs. Three-dimensional systems are more susceptible to thermal problems, which also affect VLSI with high power densities, of complex systems and under extreme temperatures. We analytically and experimentally investigate thermal effects in ICs. We study the effects of non-uniform, non-isotropic thermal conductivity of the typically complex IC material system, with a simulator we developed including this complexity. Through our simulations, verified by experiments, we propose a method of cooling or directionally heating IC regions. 3DICs are suited for developing wireless sensor networks, commonly referred to as ``smart dust.'' The ideal smart dust node includes RF communication circuits with on-chip passive components. We present an experimental study of on-chip inductors and transformers as integrated passives. We also demonstrate the performance improvement in 3DI with its lower capacitive loads. 3DI technology is just one example of the intense development in today's electronics, which maintains the need for educational methods to assist student recruitment into technology, to prepare students for a demanding technological landscape, and to raise societal awareness of technology. We conclude this work by presenting three electrical engineering curricula we designed and implemented, targeting these needs among others

    Design automation and analysis of three-dimensional integrated circuits

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 165-176).This dissertation concerns the design of circuits and systems for an emerging technology known as three-dimensional integration. By stacking individual components, dice, or whole wafers using a high-density electromechanical interconnect, three-dimensional integration can achieve scalability and performance exceeding that of conventional fabrication technologies. There are two main contributions of this thesis. The first is a computer-aided design flow for the digital components of a three-dimensional integrated circuit (3-D IC). This flow primarily consists of two software tools: PR3D, a placement and routing tool for custom 3-D ICs based on standard cells, and 3-D Magic, a tool for designing, editing, and testing physical layout characteristics of 3-D ICs. The second contribution of this thesis is a performance analysis of the digital components of 3-D ICs. We use the above tools to determine the extent to which 3-D integration can improve timing, energy, and thermal performance. In doing so, we verify the estimates of stochastic computational models for 3-D IC interconnects and find that the models predict the optimal 3-D wire length to within 20% accuracy. We expand upon this analysis by examining how 3-D technology factors affect the optimal wire length that can be obtained. Our ultimate analysis extends this work by directly considering timing and energy in 3-D ICs. In all cases we find that significant performance improvements are possible. In contrast, thermal performance is expected to worsen with the use of 3-D integration. We examine precisely how thermal behavior scales in 3-D integration and determine quantitatively how the temperature may be controlled during the circuit placement process. We also show how advanced packaging(cont.) technologies may be leveraged to maintain acceptable die temperatures in 3-D ICs. Finally, we explore two issues for the future of 3-D integration. We determine how technology scaling impacts the effect of 3-D integration on circuit performance. We also consider how to improve the performance of digital components in a mixed-signal 3-D integrated circuit. We conclude with a look towards future 3-D IC design tools.by Shamik Das.Ph.D

    [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    Get PDF
    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests were conducted at Edwards Air Force Base. Researchers in the ground control station looking at displays were able to verify the Automatic Dependent Surveillance-Broadcast target detection and collision avoidance resolutions

    Extending systems-on-chip to the third dimension : performance, cost and technological tradeoffs.

    Get PDF
    Because of the today's market demand for high-performance, high-density portable hand-held applications, electronic system design technology has shifted the focus from 2-D planar SoC single-chip solutions to different alternative options as tiled silicon and single-level embedded modules as well as 3-D integration. Among the various choices, finding an optimal solution for system implementation dealt usually with cost, performance and other technological trade-off analysis at the system conceptual level. It has been identified that the decisions made within the first 20% of the total design cycle time will ultimately result up to 80% of the final product cost. In this paper, we discuss appropriate and realistic metric for performance and cost trade-off analysis both at system conceptual level (up-front in the design phase) and at implementation phase for verification in the three-dimensional integration. In order to validate the methodology, two ubiquitous electronic systems are analyzed under various implementation schemes and discuss the pros and cons of each of them

    Small Footprint Multilayered Millimeter-Wave Antennas and Feeding Networks for Multi-Dimensional Scanning and High-Density Integrated Systems

    Get PDF
    This paper overviews the state-of-the-art of substrate integrated waveguide (SIW) techniques in the design and realization of innovative low-cost, low-profile and low-loss (L3) millimeter-wave antenna elements, feeding networks and arrays for various wireless applications. Novel classes of multilayered antenna structures and systems are proposed and studied to exploit the vertical dimension of planar structures to overcome certain limita-tions in standard two-dimensional (2-D) topologies. The developed structures are based on two techniques, namely multi-layer stacked structures and E-plane corners. Differ-ent E-plane structures realised with SIW waveguide are presented, thereby demonstrating the potential of the proposed techniques as in multi-polarization antenna feeding. An array of 128 elements shows low SLL and height gain with just 200g of the total weight. Two versions of 2-D scanning multi-beam are presented, which effectively combine frequency scanning with beam forming networks. Adding the benefits of wide band performance to the multilayer structure, two bi-layer structures are investigated. Different stacked antennas and arrays are demonstrated to optimise the targeted antenna performances in the smallest footprint possible. These structures meet the requirement for developing inexpensive compact millimeter-wave antennas and antenna systems. Different structures and architectures are theoretically and experimentally studied and discussed for specific space- and ground-based appli-cations. Practical issues such as high-density integration and high-volume manufacturability are also addressed

    Two- and Three-dimensional High Performance, Patterned Overlay Multi-chip Module Technology

    Get PDF
    A two- and three-dimensional multi-chip module technology was developed in response to the continuum in demand for increased performance in electronic systems, as well as the desire to reduce the size, weight, and power of space systems. Though developed to satisfy the needs of military programs, such as the Strategic Defense Initiative Organization, the technology, referred to as High Density Interconnect, can also be advantageously exploited for a wide variety of commercial applications, ranging from computer workstations to instrumentation and microwave telecommunications. The robustness of the technology, as well as its high performance, make this generality in application possible. More encouraging is the possibility of this technology for achieving low cost through high volume usage
    corecore