119,600 research outputs found

    Propagation of superconducting coherence via chiral quantum-Hall edge channels

    Get PDF
    Recently, there has been significant interest in superconducting coherence via chiral quantum-Hall (QH) edge channels at an interface between a two-dimensional normal conductor and a superconductor (N-S) in a strong transverse magnetic field. In the field range where the superconductivity and the QH state coexist, the coherent confinement of electron-and hole-like quasiparticles by the interplay of Andreev reflection and the QH effect leads to the formation of Andreev edge states (AES) along the N-S interface. Here, we report the electrical conductance characteristics via the AES formed in graphene-superconductor hybrid systems in a three-terminal configuration. This measurement configuration, involving the QH edge states outside a graphene-S interface, allows the detection of the longitudinal and QH conductance separately, excluding the bulk contribution. Convincing evidence for the superconducting coherence and its propagation via the chiral QH edge channels is provided by the conductance enhancement on both the upstream and the downstream sides of the superconducting electrode as well as in bias spectroscopy results below the superconducting critical temperature. Propagation of superconducting coherence via QH edge states was more evident as more edge channels participate in the Andreev process for high filling factors with reduced valley-mixing scattering.115Ysciescopu

    PersonRank: Detecting Important People in Images

    Full text link
    Always, some individuals in images are more important/attractive than others in some events such as presentation, basketball game or speech. However, it is challenging to find important people among all individuals in images directly based on their spatial or appearance information due to the existence of diverse variations of pose, action, appearance of persons and various changes of occasions. We overcome this difficulty by constructing a multiple Hyper-Interaction Graph to treat each individual in an image as a node and inferring the most active node referring to interactions estimated by various types of clews. We model pairwise interactions between persons as the edge message communicated between nodes, resulting in a bidirectional pairwise-interaction graph. To enrich the personperson interaction estimation, we further introduce a unidirectional hyper-interaction graph that models the consensus of interaction between a focal person and any person in a local region around. Finally, we modify the PageRank algorithm to infer the activeness of persons on the multiple Hybrid-Interaction Graph (HIG), the union of the pairwise-interaction and hyperinteraction graphs, and we call our algorithm the PersonRank. In order to provide publicable datasets for evaluation, we have contributed a new dataset called Multi-scene Important People Image Dataset and gathered a NCAA Basketball Image Dataset from sports game sequences. We have demonstrated that the proposed PersonRank outperforms related methods clearly and substantially.Comment: 8 pages, conferenc

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging
    corecore