3,128 research outputs found

    Holographic Pepperโ€™s Ghost: Upright Virtual-Image Screen Realized by Holographic Mirror

    Get PDF
    A holographic mirror is a reflection-type holographic optical element that works as an off-axis mirror. It realizes an upright see-through screen serving as a virtual-image display and virtual camera. Such screen enables to realize virtual-image-based attractive applications like Pepperโ€™s ghost only with a thin optical system. This chapter describes the concept of a holographic-mirror-based virtual-image display and virtual camera, an experimental method for exposing the holographic mirror based on holographic printing, methods for dispersion compensation, and experimental results for the proposed virtual-image display and camera

    Waveguide-Type Head-Mounted Display System for AR Application

    Get PDF
    Currently, a lot of institutes and industries are working on the development of the virtual reality and augmented reality techniques, and these techniques have been recognized as the determination for the direction of the three-dimensional display development in the near future. In this chapter, we mainly discussed the design and application of several wearable head-mounted display (HMD) systems with the waveguide structure using the in- and out-couplers which are fabricated by the diffractive optical elements or holographic volume gratings. Although the structure is simple, the waveguide-type HMDs are very efficient, especially in the practical applications, especially in the augmented reality applications, which make the device light-weighted. In addition, we reviewed the existing major head-mounted display and augmented reality systems

    Holographic Optical Elements and Application

    Get PDF
    Holographic optical element has a high diffraction efficiency and a narrow-band frequency characteristic, and it has a characteristic that is able to implement several features in a single flat device. It is widely applied in various fields. In this chapter, the principle and characteristics of the holographic optical elements are described in detail, and few typical holographic optical element-based applications, such as head-mounted display, lens array, and solar concentrator, are introduced. Finally, the futuristic research concepts for holographic optical element-based applications and contents are discussed

    Exploring the Potential of 3D Visualization Techniques for Usage in Collaborative Design

    Get PDF
    Best practice for collaborative design demands good interaction between its collaborators. The capacity to share common knowledge about design models at hand is a basic requirement. With current advancing technologies gathering collective knowledge is more straightforward, as the dialog between experts can be supported better. The potential for 3D visualization techniques to become the right support tool for collaborative design is explored. Special attention is put on the possible usage for remote collaboration. The opportunities for current state-of-the-art visualization techniques from stereoscopic vision to holographic displays are researched. A classification of the various systems is explored with respect to their tangible usage for augmented reality. Appropriate interaction methods can be selected based on the usage scenario

    ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ํ”„๋ฆฐํ„ฐ๋ฅผ ์ด์šฉํ•œ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋งž์ถคํ˜• ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž ์ œ์ž‘

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ์ด๋ณ‘ํ˜ธ.This dissertation presents the studies on the design and fabrication method of a holographic optical element (HOE) for augmented reality (AR) near-eye display (NED) by using a holographic printing technique. The studies enable us to manufacture HOEs based on the digitalized design process and allow more freedom to design HOEs, beyond the conventional HOE manufacturing process. The manufactured HOE can play the role of the image combiner of the AR NED and can be designed precisely according to each users distinctive characteristics. The prototype of the HOE printer is presented and the structure is analyzed. The HOE printer can record a hogel with 1900 ร— 1900 pixels in 1 mm2 and can give complex wavefront information via using an amplitude SLM and sideband filtering technique. The author adopts an index-matching frame with a passive optical isolator, which consists of quarter waveplates and linear polarizers, to eliminate the internal reflection noise. With the HOE printer, a lens HOE with field of view (FOV) 50ยฐ is manufactured, and a holographic AR NED is implemented with the lens HOE. The experimental result shows the lens HOE and the HOE printer work properly as our purpose. Using the prototype HOE printer, the author proposes two types of novel AR NEDs. First, the author suggests a customized HOE for an eye-box extended holographic AR NED. The limitation of the conventional holographic AR NED is that the eye-box becomes very narrow when large FOV is implemented due to the limited spatial bandwidth product. By using the proposed HOE printer, the eye-box can be extended along with both horizontal and vertical directions without any mechanical scanning devices. Also, the position of the extended eye-box can be designed to fit with the movement of the eye pupil. This prevents the vignetting effect due to the eye-box mismatch. Second, the author presents a freeform mirror array (FMA) HOE and implement a retinal projection AR NED with the HOE. By using the FMA HOE, the holographic mirrors no longer block the sight of the observer. Also, the freeform phase function allows the FMA HOE to float the display to the desired location without any additional optics, such as a lens. In this way, a wide depth of field and extended eye-box retinal projection AR NED with a compact form factor is implemented. It is expected that this dissertation can help to develop a customized AR NED based on the customers needs. Furthermore, it is believed that this work can show new possibilities for research on the design and fabrication of HOEs.๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ทผ์•ˆ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด์˜ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ์˜์ƒ ๊ฒฐํ•ฉ ์†Œ์ž๋ฅผ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ํ”„๋ฆฐํŒ… ๊ธฐ์ˆ ์„ ์ด์šฉํ•˜์—ฌ ์„ค๊ณ„ ๋ฐ ์ œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•˜์—ฌ ๋…ผํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•˜์—ฌ ๊ธฐ์กด์˜ ์•„๋‚ ๋กœ๊ทธ ๋ฐฉ๋ฒ•์— ์˜์กดํ•œ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž ์ œ์ž‘ ๊ธฐ๋ฒ•์„ ๋””์ง€ํ„ธํ™” ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž์˜ ์„ค๊ณ„ ์ž์œ ๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜์—ฌ ์‚ฌ์šฉ์ž ํŠน์ง•์— ๋”ฐ๋ฅธ ๊ทผ์•ˆ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋งž์ถคํ˜• ์˜์ƒ ๊ฒฐํ•ฉ ์†Œ์ž๋ฅผ ์ œ์ž‘ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž ํ”„๋ฆฐํ„ฐ์˜ ํ”„๋กœํ† ํƒ€์ž…์„ ์ œ์ž‘ ๋ฐ ์†Œ๊ฐœํ•œ๋‹ค. ํ•ด๋‹น ํ”„๋กœํ† ํƒ€์ž…์€ 1 mm2์˜ ๋ฉด์  ์•ˆ์— 1900 ร— 1900 ๋ณต์†Œ ๊ด‘ํŒŒ ์ •๋ณด๋ฅผ ํ‘œํ˜„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ด‘ํŒŒ์˜ ๋ณต์†Œ ๋ณ€์กฐ๋ฅผ ์œ„ํ•˜์—ฌ ์ง„ํญ ๋ณ€์กฐ ๊ณต๊ฐ„๊ด‘๋ณ€์กฐ๋ฅผ ์ด์šฉํ•œ sideband filtering ๊ธฐ๋ฒ•์ด ์‚ฌ์šฉ๋œ๋‹ค. ๋˜ํ•œ ๊ตด์ ˆ๋ฅ ์ด ๋ณด์ƒ๋œ ํ”„๋ ˆ์ž„์— 1/4 ํŒŒ์žฅํŒ ๋ฐ ์„ ํ˜• ํŽธ๊ด‘์ž๋ฅผ ์ด์šฉํ•œ ์ˆ˜๋™ ๊ด‘๋ถ„๋ฆฌ์†Œ์ž๋ฅผ ์ ์šฉํ•˜์—ฌ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž๋ฅผ ๊ธฐ๋ก ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋‚ด๋ถ€ ๋ฐ˜์‚ฌ ๋…ธ์ด์ฆˆ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ํ”„๋ฆฐํ„ฐ์˜ ํ”„๋กœํ† ํƒ€์ž…์ด ์˜๋„ํ•œ ๋Œ€๋กœ ์ œ์ž‘๋˜์—ˆ์Œ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž ๋ Œ์ฆˆ๋ฅผ ์ œ์ž‘ ๋ฐ, ํ•ด๋‹น ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž ๋ Œ์ฆˆ๊ฐ€ ๊ทผ์•ˆ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์˜์ƒ ๊ฒฐํ•ฉ ์†Œ์ž๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ์ œ์ž‘๋œ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž ํ”„๋ฆฐํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‘ ๊ฐ€์ง€์˜ ์ƒˆ๋กœ์šด ๊ทผ์•ˆ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์‹œ์ฒญ์˜์—ญ์ด ์ฆ๊ฐ€ํ•œ ๊ทผ์•ˆ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด๋กœ, ๊ณต๊ฐ„๋Œ€์—ญํญ์— ์˜ํ•˜์—ฌ ์ œํ•œ๋œ ์‹œ์ฒญ ์˜์—ญ์„ ์ˆ˜์ง ๋ฐ ์ˆ˜ํ‰ ๋ฐฉํ–ฅ์œผ๋กœ ๋™์‹œ์— ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ํ™•์žฅ๋œ ์‹œ์ฒญ ์˜์—ญ์€ ์‚ฌ์šฉ์ž์˜ ์•ˆ๊ตฌ ๊ธธ์ด ๋ฐ ํšŒ์ „ ๊ฐ๋„์— ๋งž์ถฐ ์„ค๊ณ„๋˜์–ด ์‹œ์ฒญ์˜์—ญ ๋ถˆ์ผ์น˜๋กœ ์ธํ•œ ๋น„๋„คํŒ… ๋“ฑ์˜ ์ด๋ฏธ์ง€ ์™œ๊ณก์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ง๋ง‰ํˆฌ์‚ฌ ํ˜•ํƒœ์˜ ๊ทผ์•ˆ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ”„๋ฆฌํผ ๊ฑฐ์šธ ์–ด๋ ˆ์ด ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ, ๊ธฐ์กด ๊ฑฐ์šธ ์–ด๋ ˆ์ด ๊ธฐ๋ฐ˜์˜ ๋ง๋ง‰ํˆฌ์‚ฌ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋ฌธ์ œ์  ์ค‘ ํ•˜๋‚˜์ธ ๊ฑฐ์šธ์ด ์‹œ์•ผ๋ฅผ ๊ฐ€๋ฆฌ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ๋˜ํ•œ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ฑฐ์šธ ๋ฐฐ์—ด์— ์œ„์ƒ ๋ณ€์กฐ ํŒจํ„ด์„ ๊ธฐ๋กํ•˜์—ฌ ์ถ”๊ฐ€์ ์ธ ๋ Œ์ฆˆ ๋“ฑ์˜ ๊ด‘ํ•™๊ณ„ ์—†์ด ์›ํ•˜๋Š” ๊นŠ์ด์— ๋””์Šคํ”Œ๋ ˆ์ด ํ‰๋ฉด์„ ๋„์šธ ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ์ž‘์€ ํผํŒฉํ„ฐ์˜ ๋„“์€ ๊นŠ์ด ํ‘œํ˜„ ๋ฒ”์œ„๋ฅผ ์ง€๋‹ˆ๋Š” ๋ง๋ง‰ํˆฌ์‚ฌํ˜• ๊ทผ์•ˆ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ๊ตฌํ˜„ํ•œ๋‹ค. ๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์˜ ๊ฒฐ๊ณผ๋Š” ์‚ฌ์šฉ์ž์˜ ํ•„์š”์— ๊ธฐ๋ฐ˜ํ•œ ๋งž์ถคํ˜• ๊ทผ์•ˆ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ฐœ๋ฐœ์— ๋„์›€์ด ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋‚˜์•„๊ฐ€, ๋ณธ ์—ฐ๊ตฌ๋Š” ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž์˜ ์„ค๊ณ„์™€ ์ œ์ž‘์— ๊ด€ํ•œ ์—ฐ๊ตฌ์˜ ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.1 Introduction 1 1.1 Image combiners of augmented reality near-eye display 1 1.2 Motivation and purpose of this dissertation 8 1.3 Scope and organization 10 2 Holographic optical element printer 12 2.1 Introduction 12 2.2 Overview of the prototype of holographic optical element printer 16 2.3 Analysis of the signal path 21 2.4 Considerations in designing an HOE 27 2.5 Removal of the internal reflection noise using passive optical isolator 32 2.6 Manufacturing customized lens holographic optical element 37 2.7 Discussion 41 2.7.1 HOE printer to modulate both signal and reference beams 41 2.7.2 The term "hogel" used in this dissertation 41 2.8 Summary 44 3 Holographically customized optical combiner for eye-box extended near-eye display 45 3.1 Introduction 45 3.2 Proposed method and its implementation 51 3.3 Implemented prototype 57 3.4 Experiments and results 61 3.5 Discussion 63 3.5.1 Vignetting effect from mismatched pupil position along axial direction 63 3.5.2 Diffraction efficiency simulation according to incident angle 65 3.6 Summary 67 4 Holographically printed freeform mirror array for augmented reality near-eye display 68 4.1 Introduction 68 4.2 Retinal projection NED based on small aperture array 70 4.3 Proposed method 72 4.4 Design method of FMA HOE 75 4.4.1 Depth of field analysis 75 4.4.2 The size of the mirror 77 4.4.3 The distance between the mirrors 79 4.5 Experiments and results 82 4.6 Discussion 86 4.6.1 Eye-box of the system via the angular selectivity of the HOE 86 4.7 Summary 89 5 Conclusion 90 Appendix 104 Abstract (In Korean) 105Docto

    ๋น„๋“ฑ๋ฐฉ์„ฑ ๊ด‘ํ•™ ์†Œ์ž๋ฅผ ์ด์šฉํ•œ ๊ด‘ ์‹œ์•ผ๊ฐ ๊ทผ์•ˆ ๋””์Šคํ”Œ๋ ˆ์ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์ด๋ณ‘ํ˜ธ.Near-eye display is considered as a promising display technique to realize augmented reality by virtue of its high sense of immersion and user-friendly interface. Among the important performances of near-eye display, a field of view is the most crucial factor for providing a seamless and immersive experience for augmented reality. In this dissertation, a transmissive eyepiece is devised instead of a conventional reflective eyepiece and it is discussed how to widen the field of view without loss of additional system performance. In order to realize the transmissive eyepiece, the eyepiece should operate lens to virtual information and glass to real-world scene. Polarization multiplexing technique is used to implement the multi-functional optical element, and anisotropic optical elements are used as material for multi-functional optical element. To demonstrate the proposed idea, an index-matched anisotropic crystal lens has been presented that reacts differently depending on polarization. With the combination of isotropic material and anisotropic crystal, the index-matched anisotropic crystal lens can be the transmissive eyepiece and achieve the large field of view. Despite the large field of view by the index-matched anisotropic crystal lens, many problems including form factor still remain to be solved. In order to overcome the limitations of conventional optics, a metasurface is adopted to the augmented reality application. With a stunning optical performance of the metasurface, a see-through metasurface lens is proposed and designed for implementing wide field of view near-eye display. The proposed novel eyepieces are expected to be an initiative study not only improving the specification of the existing near-eye display but opening the way for a next generation near-eye display.๊ทผ์•ˆ ๋””์Šคํ”Œ๋ ˆ์ด๋Š” ๋†’์€ ๋ชฐ์ž…๊ฐ๊ณผ ์‚ฌ์šฉ์ž ์นœํ™”์ ์ธ ์ธํ„ฐํŽ˜์ด์Šค๋กœ ์ธํ•ด ์ฆ๊ฐ• ํ˜„์‹ค์„ ๊ตฌํ˜„ํ•˜๋Š” ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ๊ธฐ์ˆ ๋กœ ์ตœ๊ทผ ํ™œ๋ฐœํ•œ ์—ฐ๊ตฌ๊ฐ€ ๊ณ„์†๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ทผ์•ˆ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ค‘์š”ํ•œ ์„ฑ๋Šฅ ์ค‘ ์‹œ์•ผ๊ฐ์€ ๋งค๋„๋Ÿฝ๊ณ  ๋ชฐ์ž…๊ฐ ์žˆ๋Š” ๊ฒฝํ—˜์„ ์‚ฌ์šฉ์ž์—๊ฒŒ ์ „ํ•ด์คŒ์œผ๋กœ์จ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ด‘ํ•™์  ํ‰๊ฐ€์ง€ํ‘œ ์ค‘์— ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด์˜ ๋ฐ˜์‚ฌํ˜• ์•„์ดํ”ผ์Šค (eyepiece) ๋ฅผ ๋Œ€์‹ ํ•˜๋Š” ํˆฌ๊ณผํ˜• ์•„์ดํ”ผ์Šค๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํˆฌ๊ณผํ˜• ์•„์ดํ”ผ์Šค๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์™ธ๋ถ€ ์ •๋ณด์— ๋Œ€ํ•ด์„œ๋Š” ํˆฌ๋ช…ํ•œ ์œ ๋ฆฌ์™€ ๊ฐ™์ด ํˆฌ๊ณผ์‹œํ‚ค๋ฉฐ, ๋™์‹œ์— ๊ฐ€์ƒ ์ •๋ณด๋Š” ๋ Œ์ฆˆ๋กœ ์ž‘๋™ํ•˜์—ฌ ๋จผ ๊ฑฐ๋ฆฌ์— ๋„์šธ ์ˆ˜ ์žˆ๋Š” ๊ด‘ํ•™์†Œ์ž๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํˆฌ๊ณผํ˜• ์•„์ดํ”ผ์Šค๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ ํŽธ๊ด‘์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š” ๊ตด์ ˆ๋ฅ  ์ •ํ•ฉ ์ด๋ฐฉ์„ฑ ๊ฒฐ์ • ๋ Œ์ฆˆ (index-matched anisotropic crystal lens) ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฐฉ์„ฑ ๊ฒฐ์ • ๊ตฌ์กฐ (anisotropic crystal)๋กœ ์ด๋ฃจ์–ด์ง„ ๋ Œ์ฆˆ์™€ ์ด๋ฅผ ๋‘˜๋Ÿฌ์‹ผ ๋“ฑ๋ฐฉ์„ฑ ๋ฌผ์งˆ (isotropic crytal) ๋กœ ์ด๋ฃจ์–ด์ง„ ๊ตด์ ˆ๋ฅ  ์ •ํ•ฉ ์ด๋ฐฉ์„ฑ ๊ฒฐ์ • ๋ Œ์ฆˆ๋Š” ํŽธ๊ด‘์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ์ž‘๋™ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํˆฌ๊ณผํ˜• ์•„์ดํ”ผ์Šค๋Š” ๊ธฐ์กด์˜ ๊ทผ์•ˆ ๋””์Šคํ”Œ๋ ˆ์ด์— ๋น„ํ•ด ๋„“์€ ์‹œ์•ผ๊ฐ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ์ด๋ฐฉ์„ฑ ๊ฒฐ์ • ๊ตฌ์กฐ์˜ ๋‚ฎ์€ ๊ตด์ ˆ๋ฅ  ์ฐจ์ด๋กœ ์ธํ•ด ์‹œ์Šคํ…œ์˜ ํฌ๊ธฐ๊ฐ€ ์ปค์ง€๋Š” ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋‹จ์ ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ๋ฉ”ํƒ€ ํ‘œ๋ฉด์„ ์ฆ๊ฐ• ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด ๋ถ„์•ผ์— ์ ์šฉํ•˜์˜€๋‹ค. ๋ฉ”ํƒ€ ํ‘œ๋ฉด์˜ ๊ธฐ์กด ๊ด‘ํ•™ ์†Œ์ž๋ฅผ ๋Šฅ๊ฐ€ํ•˜๋Š” ๋†€๋ผ์šด ๊ด‘ํ•™ ์„ฑ๋Šฅ์„ ์ด์šฉํ•˜์—ฌ ๋„“์€ ์‹œ์•ผ๊ฐ์„ ๊ฐ€์ง€๋Š” ๊ทผ์•ˆ ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ํˆฌ๋ช… ๋ฉ”ํƒ€ ๋ Œ์ฆˆ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ํŽธ๊ด‘์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š” ํˆฌ๋ช… ๋ฉ”ํƒ€๋ Œ์ฆˆ๋Š” ๋„“์€ ์‹œ์•ผ๊ฐ๊ณผ ๊ฒฝ๋Ÿ‰ํ™” ์‹œ์Šคํ…œ ๊ตฌํ˜„์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ ์ด๋ฅผ ์ž…์ฆํ•˜๊ธฐ ์œ„ํ•ด ํˆฌ๋ช… ๋ฉ”ํƒ€๋ Œ์ฆˆ์˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ• ๋ฟ ์•„๋‹ˆ๋ผ ์‹ค์ œ ๊ตฌํ˜„์„ ํ†ตํ•œ ๊ฐ€๋Šฅ์„ฑ์„ ์ž…์ฆํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ƒˆ๋กœ์šด ์•„์ดํ”ผ์Šค์— ๋Œ€ํ•œ ๊ฐœ๋…์€ ๊ธฐ์กด์˜ ๊ทผ์•ˆ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์‚ฌ์–‘ ๊ฐœ์„ ์— ์œ ์šฉํ•˜๊ฒŒ ์‚ฌ์šฉ๋  ๋ฟ ์•„๋‹ˆ๋ผ ์ฐจ์„ธ๋Œ€ ๊ทผ์•ˆ ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์œ„ํ•œ ์„ ๋„์ ์ธ ์—ญํ• ์„ ํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Abstract Contents List of Tables List of Figures Near-eye displays with wide field of view using anisotropic optical elements Chapter 1 Introduction 1.1 Near-eye displays for augmented reality 1.2 Optical performances of near-eye display 1.3 State-of-the-arts of near-eye display 1.4 Motivation and contribution of this dissertation Chapter 2 Transmissive eyepiece for wide field of view near-eye display 2.1 Transmissive eyepiece for near-eye display Chapter 3 Near-eye display using index-matched anisotropic crystal lens 3.1 Introduction 3.2 Index-matched anisotropic crystal lens 3.2.1 Principle of the index-matched anisotropic crystal lens 3.2.2 Aberration analysis of index-matched anisotropic crystal lens 3.2.3 Implementation 3.3 Near-eye displays using index-matched anisotropic crystal lens 3.3.1 Near-eye display using index-matched anisotropic crystal lens 3.3.2 Flat panel type near-eye display using IMACL 3.3.3 Polarization property of transparent screen 3.4 Conclusion Chapter 4 Near-eye display using metasurface lens 4.1 Introduction 4.2 See-through metasurface lens 4.2.1 Metasurface lens 4.3 Full-color near-eye display using metasurface lens 4.3.1 Full-color near-eye display using metasurface lens 4.3.2 Holographic near-eye display using metasurface lens for aberration compensation 4.4 Conclusion Chapter 5 Conclusion Bibliography AppendixDocto

    Optics and lasers: A compilation

    Get PDF
    A number of innovative devices and techniques in optics and related fields were presented. The following areas were covered: advances in laser and holography technology, articles on spectroscopy and general optics, new information in the area of photography
    • โ€ฆ
    corecore