486 research outputs found

    High speed, precision motion strategies for lightweight structures

    Get PDF
    Research on space telerobotics is summarized. Adaptive control experiments on the Robotic Arm, Large and Flexible (RALF) were preformed and are documented, along with a joint controller design for the Small Articulated Manipulator (SAM), which is mounted on the RALF. A control algorithm is described as a robust decentralized adaptive control based on a bounded uncertainty approach. Dynamic interactions between SAM and RALF are examined. Unstability of the manipulator is studied from the perspective that the inertial forces generated could actually be used to more rapidly damp out the flexible manipulator's vibration. Currently being studied is the modeling of the constrained dynamics of flexible arms

    Exploiting Multi Stability of Compliant Locking Mechanism for Reconfigurable Articulation in Robotic Arm

    Get PDF
    This study analyzes a biology inspired approach of utilizing a compliant unit actuator to simplify the control requirements for a soft robotic arm. A robot arm is constructed from a series of compliant unit actuators that precisely actuate between two stable states. The extended state can be characterized as a rigid link with a high bending stiffness. The compressed state can be characterized as a flexible joint with a low bending stiffness. Without the use of an external power source, the bistable mechanism remains in each of the stable states. The unit actuator can demonstrate pseudo-linkage kinematics that require less control parameters than entirely soft manipulators. An advantage of using compliant mechanisms to design a robotic arm is that the bending stiffness ratio between the extended and compressed states is related to the frame and flexural member geometry. Post buckling characteristics of thin flexural members, combined with a cantilever style frame design gives the unit actuator versatile advantages over existing actuator designs like layer jamming and shape memory polymers. To achieve efficient movement with the optimized unit actuator design, experimental validation was performed, and a robotic arm prototype was fabricated. The tendon-driven robotic arm consisted of three modules and proved the capability of transforming and rotating in the eight configurations. The deformations of the robotic arm are accurately predicted by the kinematic model and validate the compliant mechanism arm and simple control system

    Virtual Sensor for Kinematic Estimation of Flexible Links in Parallel Robots

    Get PDF
    The control of flexible link parallel manipulators is still an open area of research, endpoint trajectory tracking being one of the main challenges in this type of robot. The flexibility and deformations of the limbs make the estimation of the Tool Centre Point (TCP) position a challenging one. Authors have proposed different approaches to estimate this deformation and deduce the location of the TCP. However, most of these approaches require expensive measurement systems or the use of high computational cost integration methods. This work presents a novel approach based on a virtual sensor which can not only precisely estimate the deformation of the flexible links in control applications (less than 2% error), but also its derivatives (less than 6% error in velocity and 13% error in acceleration) according to simulation results. The validity of the proposed Virtual Sensor is tested in a Delta Robot, where the position of the TCP is estimated based on the Virtual Sensor measurements with less than a 0.03% of error in comparison with the flexible approach developed in ADAMS Multibody Software.This work was supported in part by the Spanish Ministry of Economy and Competitiveness under grant BES-2013-066142, UPV/EHU's PPG17/56 projects, Spanish Ministry of Economy and Competitiveness' MINECO & FEDER inside DPI-2012-32882 project and the Basque Country Government's (GV/EJ) under PRE-2014-1-152 and BFI-2012-223 grants and under recognized research group IT914-16

    Vibration Based Control for Flexible Link Manipulator

    Get PDF

    Nonlinear control for Two-Link flexible manipulator

    Get PDF
    Recently the use of robot manipulators has been increasing in many applications such as medical applications, automobile, construction, manufacturing, military, space, etc. However, current rigid manipulators have high inertia and use actuators with large energy consumption. Moreover, rigid manipulators are slow and have low payload-to arm-mass ratios because link deformation is not allowed. The main advantages of flexible manipulators over rigid manipulators are light in weight, higher speed of operation, larger workspace, smaller actuator, lower energy consumption and lower cost. However, there is no adequate closed-form solutions exist for flexible manipulators. This is mainly because flexible dynamics are modeled with partial differential equations, which give rise to infinite dimensional dynamical systems that are, in general, not possible to represent exactly or efficiently on a computer which makes modeling a challenging task. In addition, if flexibility nature wasn\u27t considered, there will be calculation errors in the calculated torque requirement for the motors and in the calculated position of the end-effecter. As for the control task, it is considered as a complex task since flexible manipulators are non-minimum phase system, under-actuated system and Multi-Input/Multi-Output (MIMO) nonlinear system. This thesis focuses on the development of dynamic formulation model and three control techniques aiming to achieve accurate position control and improving dynamic stability for Two-Link Flexible Manipulators (TLFMs). LQR controller is designed based on the linearized model of the TLFM; however, it is applied on both linearized and nonlinear models. In addition to LQR, Backstepping and Sliding mode controllers are designed as nonlinear control approaches and applied on both the nonlinear model of the TLFM and the physical system. The three developed control techniques are tested through simulation based on the developed dynamic formulation model using MATLAB/SIMULINK. Stability and performance analysis were conducted and tuned to obtain the best results. Then, the performance and stability results obtained through simulation are compared. Finally, the developed control techniques were implemented and analyzed on the 2-DOF Serial Flexible Link Robot experimental system from Quanser and the results are illustrated and compared with that obtained through simulation

    Energy-based trajectory tracking and vibration control for multilink highly flexible manipulators

    Get PDF
    In this paper, a discrete model is adopted, as proposed by Hencky for elastica based on rigid bars and lumped rotational springs, to design the control of a lightweight planar manipulator with multiple highly flexible links. This model is particularly suited to deal with nonlinear equations of motion as those associated with multilink robot arms, because it does not include any simplification due to linearization, as in the assumed modes method. The aim of the control is to track a trajectory of the end effector of the robot arm, without the onset of vibrations. To this end, an energy-based method is proposed. Numerical simulations show the effectiveness of the presented approach

    A compliant and redundantly actuated 2-DOF 3RRR PKM: Less is more

    Get PDF

    The dynamic response of a flexible three-link robot using strain gages, Lagrange polynomials, Fourier series, and the finite element analysis

    Full text link
    This thesis presents theoretical and experimental methods for determining the static and dynamic response, in three dimensional space, of a flexible three-link robotic manipulator. The Links are designed to deform elastically under static and dynamic loads. Lagrange polynomials are derived to determine the defected shape of the robotic links. All coefficients of the Lagrange polynomials are functions of the elastic strain at three specific locations on each link. Strains are converted to voltage differentials and are read into a micro-computer through an A-to-D board system, where they are converted to digital strain values. Coefficients defining the damped response of the robot are determined experimentally. The dynamic response of the robotic manipulator is also studied using the finite element method. Given the readings of the angular encoders, a FORTRAN code is presented that prepares complete source files for the robot. (Abstract shortened with permission of author.)

    MODELLING AND CONTROL OF A TWO-LINK RIGID-FLEXIBLE MANIPULATOR

    Get PDF
    The literature lacks data on the reliability of 3D models created by Autodesk Inventor software and imported to MATLAB Simulink software in comparison to mathematically generated models. In this contribution, a two-link rigid-flexible manipulator modelled in two different methods was demonstrated, one of which is using Lagrange equations and Finite Element Method to generate a mathematical model of the manipulator, and the other is creating a 3D model with the aid of Autodesk Inventor then import to MATLAB Simulink, both models were subsequently controlled by three types of controllers, conventional PID controller, LQR controller, and LQG controller. The research demonstrated the performance of the two models with response to the three types of controllers. Achieved results have proven that the Autodesk Inventor is considered a reliable tool for modelling mechanical systems. Results have also confirmed that modern controllers, i.e., LQR and LQG controllers perform much better than conventional PID controllers with regards to the manipulator movement. The implementation of Autodesk Inventor along with MATLAB Simulink indicates that the Autodesk Inventor can be considered as an instrumental tool for designers and engineers. The results enable future developments in the frontier area of robotics and mechanical systems, where sophisticated models could be generated by Autodesk Inventor instead of being modelled mathematically which will benefit engineers and designers by saving time and effort consumed in modelling using mathematical equations, and by reducing the potential errors associated with such modelling technique
    corecore