1,411 research outputs found

    Nonpositively curved 2-complexes with isolated flats

    Full text link
    We introduce the class of nonpositively curved 2-complexes with the Isolated Flats Property. These 2-complexes are, in a sense, hyperbolic relative to their flats. More precisely, we show that several important properties of Gromov-hyperbolic spaces hold `relative to flats' in nonpositively curved 2-complexes with the Isolated Flats Property. We introduce the Relatively Thin Triangle Property, which states roughly that the fat part of a geodesic triangle lies near a single flat. We also introduce the Relative Fellow Traveller Property, which states that pairs of quasigeodesics with common endpoints fellow travel relative to flats, in a suitable sense. The main result of this paper states that in the setting of CAT(0) 2-complexes, the Isolated Flats Property is equivalent to the Relatively Thin Triangle Property and is also equivalent to the Relative Fellow Traveller Property.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol8/paper5.abs.htm

    AFLOW-CHULL: Cloud-Oriented Platform for Autonomous Phase Stability Analysis

    Get PDF
    A priori prediction of phase stability of materials is a challenging practice, requiring knowledge of all energetically-competing structures at formation conditions. Large materials repositories - housing properties of both experimental and hypothetical compounds - offer a path to prediction through the construction of informatics-based, ab-initio phase diagrams. However, limited access to relevant data and software infrastructure has rendered thermodynamic characterizations largely peripheral, despite their continued success in dictating synthesizability. Herein, a new module is presented for autonomous thermodynamic stability analysis implemented within the open-source, ab-initio framework AFLOW. Powered by the AFLUX Search-API, AFLOW-CHULL leverages data of more than 1.8 million compounds currently characterized in the AFLOW.org repository and can be employed locally from any UNIX-like computer. The module integrates a range of functionality: the identification of stable phases and equivalent structures, phase coexistence, measures for robust stability, and determination of decomposition reactions. As a proof-of-concept, thorough thermodynamic characterizations have been performed for more than 1,300 binary and ternary systems, enabling the identification of several candidate phases for synthesis based on their relative stability criterion - including 18 promising C15b-type structures and two half-Heuslers. In addition to a full report included herein, an interactive, online web application has been developed showcasing the results of the analysis, and is located at aflow.org/aflow-chull

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Full text link
    Visual robot navigation within large-scale, semi-structured environments deals with various challenges such as computation intensive path planning algorithms or insufficient knowledge about traversable spaces. Moreover, many state-of-the-art navigation approaches only operate locally instead of gaining a more conceptual understanding of the planning objective. This limits the complexity of tasks a robot can accomplish and makes it harder to deal with uncertainties that are present in the context of real-time robotics applications. In this work, we present Topomap, a framework which simplifies the navigation task by providing a map to the robot which is tailored for path planning use. This novel approach transforms a sparse feature-based map from a visual Simultaneous Localization And Mapping (SLAM) system into a three-dimensional topological map. This is done in two steps. First, we extract occupancy information directly from the noisy sparse point cloud. Then, we create a set of convex free-space clusters, which are the vertices of the topological map. We show that this representation improves the efficiency of global planning, and we provide a complete derivation of our algorithm. Planning experiments on real world datasets demonstrate that we achieve similar performance as RRT* with significantly lower computation times and storage requirements. Finally, we test our algorithm on a mobile robotic platform to prove its advantages.Comment: 8 page

    Cluster Expansion by Transfer Learning from Empirical Potentials

    Full text link
    Cluster expansions provide effective representations of the potential energy landscape of multicomponent crystalline solids. Notwithstanding major advances in cluster expansion implementations, it remains computationally demanding to construct these expansions for systems of low dimension or with a large number of components, such as clusters, interfaces, and multimetallic alloys. We address these challenges by employing transfer learning to accelerate the computationally demanding step of generating configurational data from first principles. The proposed approach exploits Bayesian inference to incorporate prior knowledge from physics-based or machine-learning empirical potentials, enabling one to identify the most informative configurations within a dataset. The efficacy of the method is tested on face-centered cubic Pt:Ni binaries, yielding a two- to three-fold reduction in the number of first-principles calculations, while ensuring robust convergence of the energies with low statistical fluctuations

    Computational Approaches to Lattice Packing and Covering Problems

    Full text link
    We describe algorithms which address two classical problems in lattice geometry: the lattice covering and the simultaneous lattice packing-covering problem. Theoretically our algorithms solve the two problems in any fixed dimension d in the sense that they approximate optimal covering lattices and optimal packing-covering lattices within any desired accuracy. Both algorithms involve semidefinite programming and are based on Voronoi's reduction theory for positive definite quadratic forms, which describes all possible Delone triangulations of Z^d. In practice, our implementations reproduce known results in dimensions d <= 5 and in particular solve the two problems in these dimensions. For d = 6 our computations produce new best known covering as well as packing-covering lattices, which are closely related to the lattice (E6)*. For d = 7, 8 our approach leads to new best known covering lattices. Although we use numerical methods, we made some effort to transform numerical evidences into rigorous proofs. We provide rigorous error bounds and prove that some of the new lattices are locally optimal.Comment: (v3) 40 pages, 5 figures, 6 tables, some corrections, accepted in Discrete and Computational Geometry, see also http://fma2.math.uni-magdeburg.de/~latgeo
    corecore