359,461 research outputs found

    Displaying real 3-D object images using a computer-generated hologram : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    The magic of an optical hologram that produced by optical system offer us a never ending sense of wonderment. The images reconstructed from an optical hologram exhibit all of the three dimensional properties with full, rich perspective effects, enabling us to catch sight of an object behind another by mere tilt of the head. Computer-generated holograms, synthetic holograms and computer holograms are terms used to refer to a class of holograms that are produced as graphical output from a digital computer. It has been reported that a computer-generated hologram can also yield a three dimensional image. The main advantage of the computer-generated hologram is that it can be used to generate a three dimensional image of an object that may not physically exist. But can a computer-generated hologram be used as a three dimensional display device? This thesis examines the ability of a computer-generated hologram as a three dimensional display device. Many techniques have been used to produce computer-generated holograms. Mathematical descriptions of computer-generated holograms are discussed. The quality of the images reconstructed from these computer-generated holograms are examined. The computation time for producing these computer-generated holograms are compared

    Processing of optically-captured digital holograms for three-dimensional display

    Get PDF
    In digital holography, holograms are usually optically captured and then two-dimensional slices of the reconstruction volume are reconstructed by computer and displayed on a two-dimensional display. When the recording is of a three-dimensional scene then such two-dimensional display becomes restrictive. We outline our progress on capturing larger ranges of perspectives of three-dimensional scenes, and our progress on four approaches to better visualise this three-dimensional information encoded in the digital holograms. The research has been performed within a European Commission funded research project dedicated the capture, processing, transmission, and display of real-world 3D and 4D scenes using digital holography

    Computed structures of polyimides model compounds

    Get PDF
    Using a semi-empirical approach, a computer study was made of 8 model compounds of polyimides. The compounds represent subunits from which NASA Langley Research Center has successfully synthesized polymers for aerospace high performance material application, including one of the most promising, LARC-TPI polymer. Three-dimensional graphic display as well as important molecular structure data pertaining to these 8 compounds are obtained

    Real-time graphics for the Space Station Freedom cupola, developed in the Systems Engineering Simulator

    Get PDF
    Among the Lyndon B. Johnson Space Center's responsibilities for Space Station Freedom is the cupola. Attached to the resource node, the cupola is a windowed structure that will serve as the space station's secondary control center. From the cupola, operations involving the mobile service center and orbital maneuvering vehicle will be conducted. The Systems Engineering Simulator (SES), located in building 16, activated a real-time man-in-the-loop cupola simulator in November 1987. The SES cupola is an engineering tool with the flexibility to evolve in both hardware and software as the final cupola design matures. Two workstations are simulated with closed-circuit television monitors, rotational and translational hand controllers, programmable display pushbuttons, and graphics display with trackball and keyboard. The displays and controls of the SES cupola are driven by a Silicon Graphics Integrated Raster Imaging System (IRIS) 4D/70 GT computer. Through the use of an interactive display builder program, SES, cupola display pages consisting of two dimensional and three dimensional graphics are constructed. These display pages interact with the SES via the IRIS real-time graphics interface. The focus is on the real-time graphics interface applications software developed on the IRIS

    Human-display interactions: Context-specific biases

    Get PDF
    Recent developments in computer engineering have greatly enhanced the capabilities of display technology. As displays are no longer limited to simple alphanumeric output, they can present a wide variety of graphic information, using either static or dynamic presentation modes. At the same time that interface designers exploit the increased capabilities of these displays, they must be aware of the inherent limitation of these displays. Generally, these limitations can be divided into those that reflect limitations of the medium (e.g., reducing three-dimensional representations onto a two-dimensional projection) and those reflecting the perceptual and conceptual biases of the operator. The advantages and limitations of static and dynamic graphic displays are considered. Rather than enter into the discussion of whether dynamic or static displays are superior, general advantages and limitations are explored which are contextually specific to each type of display

    A rocket engine design expert system

    Get PDF
    The overall structure and capabilities of an expert system designed to evaluate rocket engine performance are described. The expert system incorporates a JANNAF standard reference computer code to determine rocket engine performance and a state-of-the-art finite element computer code to calculate the interactions between propellant injection, energy release in the combustion chamber, and regenerative cooling heat transfer. Rule-of-thumb heuristics were incorporated for the hydrogen-oxygen coaxial injector design, including a minimum gap size constraint on the total number of injector elements. One-dimensional equilibrium chemistry was employed in the energy release analysis of the combustion chamber and three-dimensional finite-difference analysis of the regenerative cooling channels was used to calculate the pressure drop along the channels and the coolant temperature as it exits the coolant circuit. Inputting values to describe the geometry and state properties of the entire system is done directly from the computer keyboard. Graphical display of all output results from the computer code analyses is facilitated by menu selection of up to five dependent variables per plot

    Three dimensional simulation of cloth drape

    Get PDF
    Research has been carried out in the study of cloth modelling over many decades. The more recent arrival of computers however has meant that the necessary complex calculations can be performed quicker and that visual display of the results is more realistic than for the earlier models. Today's textile and garment designers are happy to use the latest two dimensional design and display technology to create designs and experiment with patterns and colours. The computer is seen as an additional tool that performs some of the more tedious jobs such as re-drawing, re-colouring and pattern sizing. Designers have the ability and experience to visualise their ideas without the need for photo reality. However the real garment must be created when promoting these ideas to potential customers. Three dimensional computer visualisation of a garment can remove the need to create the garment until after the customer has placed an order. As well as reducing costs in the fashion industry, realistic three dimensional cloth animation has benefits for the computer games and film industries. This thesis describes the development of a realistic cloth drape model. The system uses the Finite Element Method for the draping equations and graphics routines to enhance the visual display. During the research the problem of collision detection and response involving dynamic models has been tackled and a unique collision detection method has been developed. This method has proved very accurate in the simulation of cloth drape over a body model and is also described in the thesis. Three dimensional design and display are seen as the next logical steps to current two dimensional practices in the textiles industry. This thesis outlines current and previous cloth modelling studies carried out by other research groups. It goes on to provide a full description of the drape method that has been developed during this research period
    • …
    corecore