2,387 research outputs found

    3D reconstruction of cerebral blood flow and vessel morphology from x-ray rotational angiography

    Get PDF
    Three-dimensional (3D) information on blood flow and vessel morphology is important when assessing cerebrovascular disease and when monitoring interventions. Rotational angiography is nowadays routinely used to determine the geometry of the cerebral vasculature. To this end, contrast agent is injected into one of the supplying arteries and the x-ray system rotates around the head of the patient while it acquires a sequence of x-ray images. Besides information on the 3D geometry, this sequence also contains information on blood flow, as it is possible to observe how the contrast agent is transported by the blood. The main goal of this thesis is to exploit this information for the quantitative analysis of blood flow. I propose a model-based method, called flow map fitting, which determines the blood flow waveform and the mean volumetric flow rate in the large cerebral arteries. The method uses a model of contrast agent transport to determine the flow parameters from the spatio-temporal progression of the contrast agent concentration, represented by a flow map. Furthermore, it overcomes artefacts due to the rotation (overlapping vessels and foreshortened vessels at some projection angles) of the c-arm using a reliability map. For the flow quantification, small changes to the clinical protocol of rotational angiography are desirable. These, however, hamper the standard 3D reconstruction. Therefore, a new method for the 3D reconstruction of the vessel morphology which is tailored to this application is also presented. To the best of my knowledge, I have presented the first quantitative results for blood flow quantification from rotational angiography. Additionally, the model-based approach overcomes several problems which are known from flow quantification methods for planar angiography. The method was mainly validated on images from different phantom experiments. In most cases, the relative error was between 5% and 10% for the volumetric mean flow rate and between 10% and 15% for the blood flow waveform. Additionally, the applicability of the flow model was shown on clinical images from planar angiographic acquisitions. From this, I conclude that the method has the potential to give quantitative estimates of blood flow parameters during cerebrovascular interventions

    Reconstruction of coronary arteries from X-ray angiography: A review.

    Get PDF
    Despite continuous progress in X-ray angiography systems, X-ray coronary angiography is fundamentally limited by its 2D representation of moving coronary arterial trees, which can negatively impact assessment of coronary artery disease and guidance of percutaneous coronary intervention. To provide clinicians with 3D/3D+time information of coronary arteries, methods computing reconstructions of coronary arteries from X-ray angiography are required. Because of several aspects (e.g. cardiac and respiratory motion, type of X-ray system), reconstruction from X-ray coronary angiography has led to vast amount of research and it still remains as a challenging and dynamic research area. In this paper, we review the state-of-the-art approaches on reconstruction of high-contrast coronary arteries from X-ray angiography. We mainly focus on the theoretical features in model-based (modelling) and tomographic reconstruction of coronary arteries, and discuss the evaluation strategies. We also discuss the potential role of reconstructions in clinical decision making and interventional guidance, and highlight areas for future research

    Three-dimensional ultrasound scanning

    Get PDF
    The past two decades have witnessed developments of new imaging techniques that provide three-dimensional images about the interior of the human body in a manner never before available. Ultrasound (US) imaging is an important cost-effective technique used routinely in the management of a number of diseases. However, two-dimensional viewing of three-dimensional anatomy, using conventional two-dimensional US, limits our ability to quantify and visualize the anatomy and guide therapy, because multiple two-dimensional images must be integrated mentally. This practice is inefficient, and may lead to variability and incorrect diagnoses. Investigators and companies have addressed these limitations by developing three-dimensional US techniques. Thus, in this paper, we review the various techniques that are in current use in three-dimensional US imaging systems, with a particular emphasis placed on the geometric accuracy of the generation of three-dimensional images. The principles involved in three-dimensional US imaging are then illustrated with a diagnostic and an interventional application: (i) three-dimensional carotid US imaging for quantification and monitoring of carotid atherosclerosis and (ii) three-dimensional US-guided prostate biopsy

    Automated TIMI frame counting using 3-d modeling

    Get PDF
    Three dimensional coronary modeling and reconstruction can assist in the quantitative analysis of coronary flow velocity from 2-d coronary images. In this paper a novel method to assess coronary flow velocity is proposed. First, 3-d models of the coronary arteries are estimated from bi-plane X-ray images using epipolar constraint energy minimization for the selected fiducial points like bifurcations, and subsequently 3-d B-spline energy minimization for the arterial segments. A 4-d model is assembled from a set of 3-d models representing different phases of the cardiac cycle. The 4-d model is fitted to the 2-d image sequences containing basal or hyperemic blood flow information. Then, by counting the frames in analogy with TIMI frame counting, an index of the mean coronary flow velocity can be estimated. Our experimental results show that the algorithm correlates with r=0.98 (P<0.0001, 95% CI 0.92–0.99) to the clinical measurements of the TFC

    Fully three-dimensional sound speed-corrected multi-wavelength photoacoustic breast tomography

    Full text link
    Photoacoustic tomography is a contrast agent-free imaging technique capable of visualizing blood vessels and tumor-associated vascularization in breast tissue. While sophisticated breast imaging systems have been recently developed, there is yet much to be gained in imaging depth, image quality and tissue characterization capability before clinical translation is possible. In response, we have developed a hybrid photoacoustic and ultrasound-transmission tomographic system PAM3. The photoacoustic component has for the first time three-dimensional multi-wavelength imaging capability, and implements substantial technical advancements in critical hardware and software sub-systems. The ultrasound component enables for the first time, a three-dimensional sound speed map of the breast to be incorporated in photoacoustic reconstruction to correct for inhomogeneities, enabling accurate target recovery. The results demonstrate the deepest photoacoustic breast imaging to date namely 48 mm, with a more uniform field of view than hitherto, and an isotropic spatial resolution that rivals that of Magnetic Resonance Imaging. The in vivo performance achieved, and the diagnostic value of interrogating angiogenesis-driven optical contrast as well as tumor mass sound speed contrast, gives confidence in the system's clinical potential.Comment: 33 pages Main Body, 9 pages Supplementary Materia

    Refining the 3D surface of blood vessels from a reduced set of 2D DSA images

    Get PDF
    International audienceNumerical simulations, such as blood flow or coil deployment in an intra-cranial aneurism, are very sensitive to the boundary conditions given by the surface of the vessel walls. Despite the undisputable high quality of 3D vascular imaging modalities, artifacts and noise still hamper the extraction of this surface with enough accuracy. Previous studies took the a priori that a homogeneous object was considered to make the reconstruction from the Xray images more robust. Here, an active surface approach is described, that does not depend on any particular image similarity criterion and grounds on high speed computation of the criterion derivatives. Mean square error and normalized cross-correlation are used to successfully demonstrate our algorithm on real images acquired on an anthropomorphic phantom. Preliminary results of coil deployment simulation are also given

    Constrained Stochastic State Estimation of Deformable 1D Objects: Application to Single-view 3D Reconstruction of Catheters with Radio-opaque Markers

    Get PDF
    International audienceMinimally invasive fluoroscopy-based procedures are the gold standard for diagnosis and treatment of various pathologies of the cardiovascular system. This kind of procedures imply for the clinicians to infer the 3D shape of the device from 2D images, which is known to be an ill-posed 10 problem. In this paper we present a method to reconstruct the 3D shape of the interventional device, with the aim of improving the navigation. The method combines a physics-based simulation with non-linear Bayesian filter. Whereas the physics-based model provides a prediction of the shape of the device navigating within the blood vessels (taking into account non-linear interactions be-15 tween the catheter and the surrounding anatomy), an Unscented Kalman Filter is used to correct the navigation model using 2D image features as external observations. The proposed framework has been evaluated on both synthetic and real data, under different model parameterizations, filter parameters tuning and external observations data-sets. Comparing the reconstructed 3D shape with a known ground truth, for the synthetic data-set, we obtained average values for 3D Hausdorff Distance of 0.81±0.53mm0.81 ± 0.53 mm, for the 3D mean distance at the segment of 0.37±0.170.37 ± 0.17 mm and an average 3D tip error of 0.24±0.13mm0.24 ± 0.13 mm. For the real data-set,we obtained an average 3D Hausdorff distance of 1.74±0.77mm1.74 ± 0.77 mm, a average 3D mean distance at the distal segment of 0.91 ± 0.14 mm, an average 3D error on the tip of 0.53±0.09mm0.53 ± 0.09 mm. These results show the ability of our method to retrieve the 3D shape of the device, under a variety of filter parameterizations and challenging conditions: uncertainties on model parameterization, ambiguous views and non-linear complex phenomena such as stick and slip motions

    CT angiography, MR angiography and rotational digital subtraction angiography for volumetric assessment of intracranial aneurysms. An experimental study

    Get PDF
    The purpose of our experimental study was to assess the accuracy and precision of CT angiography (CTA), MR angiography (MRA) and rotational digital subtraction angiography (DSA) for measuring the volume of an in vitro aneurysm model. A rigid model of the anterior cerebral circulation harbouring an anterior communicating aneurysm was connected to a pulsatile circuit. It was studied using unenhanced 3D time-of-flight MRA, contrast-enhanced CTA and rotational DSA angiography. The source images were then postprocessed on dedicated workstations to calculate the volume of the aneurysm. CTA was more accurate than MRA (P=0.0019). Rotational DSA was more accurate than CTA, although the difference did not reach statistical significance (P=0.1605), and significantly more accurate than MRA (P<0.00001). CTA was more precise than MRA (P=0.12), although this did not reach statistical significance. Rotational DSA can be part of the diagnosis, treatment planning and support endovascular treatment of intracranial aneurysms. The emerging endovascular treatment techniques which consist of using liquid polymers as implants to exclude aneurysms from arterial circulation would certainly benefit from this precise measurement of the volume of aneurysm

    Photoacoustic Microscopy and Photoacoustic Computed Tomography Using High-frequency Linear Array Ultrasonic Transducers

    Get PDF
    Photoacoustic tomography (PAT) is a highly promising imaging technology which forms images by detecting the induced pressure waves resulting from pulsed light absorption in biological tissues. Because the excitation source is light, PAT is a very safe, non-ionizing, and non-carcinogenic imaging technology. In biomedicine, PAT has the unique advantage of probing endogenous optical absorbers at different length scales with 100% relative sensitivity. With such scalability, PAT can image anatomical, functional, metabolic, molecular, and genetic contrasts of vasculature, hemodynamics, oxygen metabolism, biomarkers, and gene expression. Among several implementations of PAT, optical-resolution photoacoustic microscopy (OR-PAM) and photoacoustic computed tomography (PACT) are two of the most widely used. OR-PAM can achieve optical diffraction limited spatial resolution with maximum imaging depths up to one transport mean free path (~1 mm in biological tissue). PACT can achieve several centimeters imaging depth in tissue by employing ultrasonic array detectors and inverse algorithms. This dissertation aims to improve the functionality of OR-PAM using a high-frequency linear ultrasonic array, and to advance the performance of linear-array PACT to full view angle capability and higher resolution. The first part of this dissertation describes the technological advancement of multifocal optical-resolution photoacoustic microscopy (MFOR-PAM). Compared with single-focus OR-PAM, 1D multifocal OR-PAM utilizes both multifocal optical illumination and an ultrasonic transducer array, significantly increasing the imaging speed. We present a reflection-mode 1D multifocal OR-PAM system based on a 1D microlens array that provides multiple foci as well as an ultrasonic transducer array that receives the excited photoacoustic waves from all foci simultaneously. Using a customized microprism to reflect the incident laser beam to the microlens array, the multiple optical foci are aligned confocally with the focal zone of the ultrasonic transducer array. Experiments show the reflection-mode 1D multifocal OR-PAM is capable of imaging microvessels in vivo, and it can image a 6 × 5 × 2.5 mm3 volume at 16 μm lateral resolution in ∼2.5 min, limited by the signal multiplexing ratio and laser pulse repetition rate. While 1D-MFOR-PAM accelerates the scan in only one direction, a two-dimensional MFOR-PAM (2D-MFOR-PAM) fully explores the advantage of a 2D microlens array. By scanning a small range of 250 mm × 250 mm, we eventually obtained a large field of view of 10 mm × 10 mm in ~50 seconds, with a spatial resolution of 15.2 mm. The second part of this dissertation describes methods of increasing the view angle of linear-array PACT, which suffers from a limited view. While rotating either the transducer array or the imaging objects circularly enables full-view linear-array PACT, this process is time consuming. Here we propose two innovative methods to increase the view angle. The first method is to triple the detection view angle by using two planar acoustic reflectors placed at 120 degrees to each other. Without sacrificing the imaging speed, we form two virtual linear transducer arrays, adding two vantage points. Experimental results show the detection view angle of the linear-array PACT was increased from 80 to 240 degrees. The second method is an ultrasonic thermal encoding approach that is universally applicable to achieve full-view imaging with linear-array PACT. We demonstrate full-view in vivo vascular imaging and compare it to the original linear-array PACT images, showing dramatically enhanced imaging of arbitrarily oriented blood vessels. The last part of the dissertation describes the development of algorithms for linear-array PACT. The first proposed algorithm is a multi-view Hilbert transformation, which provides accurate optical absorption for full-view linear-array PACT. A multi-view high-frequency PACT imaging system was implemented with a commercial 40-MHz central frequency linear transducer array. By rotating the object through multiple angles with respect to the linear transducer array, we acquired full-view photoacoustic pressure measurements. The in-plane spatial resolution of this full-view linear-array PACT was quantified to be isotropically 60 mm within a 10×10 mm2 field of view. The system was demonstrated by imaging both a leaf skeleton and a zebrafish in vivo. The second algorithm is an inverse linear Radon transformation (ILRT), which allows linear-PACT to achieve isotropic resolution at all depth planes. Images of microspheres acquired by inverse linear Radon transformation PACT (ILRT-PACT) demonstrate that our technique improves the elevational resolution by up to 9.4 times over that of a single linear scan. The technique is further demonstrated through in vivo imaging of the mouse brain through an intact scalp
    corecore