37 research outputs found

    Three--dimensional medical imaging: Algorithms and computer systems

    Get PDF
    This paper presents an introduction to the field of three-dimensional medical imaging It presents medical imaging terms and concepts, summarizes the basic operations performed in three-dimensional medical imaging, and describes sample algorithms for accomplishing these operations. The paper contains a synopsis of the architectures and algorithms used in eight machines to render three-dimensional medical images, with particular emphasis paid to their distinctive contributions. It compares the performance of the machines along several dimensions, including image resolution, elapsed time to form an image, imaging algorithms used in the machine, and the degree of parallelism used in the architecture. The paper concludes with general trends for future developments in this field and references on three-dimensional medical imaging

    Representação, visualização e manipulação de dados médicos tridimensionais: um estudo sobre as bases da simulação cirúrgica imersiva

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Ciência da Computação.Dados tridimensionais referentes a pacientes são utilizados em diversos setores médico-hospitalares, fornecendo embasamento à diagnósticos e orientação durante procedimentos cirúrgicos. No entanto, apesar de bastante úteis estes dados são bastante inflexíveis, não permitindo que o usuário interaja com estes ou os manipule. O emprego de técnicas de computação gráfica e realidade virtual para a representação destes dados sanaria estas dificuldades, gerando representações indivíduais e adaptadas para cada paciente e permitindo a realização de planejamentos cirúrgicos e cirurgias auxiliadas por computador, dentre outras possibilidades. A representação destes dados e as formas de manipulação devem conter um conjunto de elementos e obedecer alguns requisitos para que se obtenha realismo nas aplicações, caso contrário, o emprego destas técnicas não traria grandes vantagens. Analisando os elementos e requisitos a serem obedecidos, é construído um grafo de dependências que mostra as técnicas e estruturas computacionais necessárias para a obtenção de ambientes virtuais imersivos realistas. Tal grafo demonstra as estruturas de dados para representação de sólidos como peça chave para este tipo de aplicativos. Para suprir as necessidades destes, é apresentada uma estrutura de dado capaz de representar uma vasta classe de topologias espaciais, além de permitir rápido acesso a elementos e suas vizinhanças, bem como métodos para a construção de tal estrutura. É apresentada, também, uma aplicação para mensuração de artérias utilizando a estrutura e os métodos previamente mencionados e os resultados por obtidos por estes

    Large Model Visualization : Techniques and Applications

    Get PDF
    The size of datasets in scientific computing is rapidly increasing. This increase is caused by a boost of processing power in the past years, which in turn was invested in an increase of the accuracy and the size of the models. A similar trend enabled a significant improvement of medical scanners; more than 1000 slices of a resolution of 512x512 can be generated by modern scanners in daily practice. Even in computer-aided engineering typical models eas-ily contain several million polygons. Unfortunately, the data complexity is growing faster than the rendering performance of modern computer systems. This is not only due to the slower growing graphics performance of the graphics subsystems, but in particular because of the significantly slower growing memory bandwidth for the transfer of the geometry and image data from the main memory to the graphics accelerator. Large model visualization addresses this growing divide between data complexity and rendering performance. Most methods focus on the reduction of the geometric or pixel complexity, and hence also the memory bandwidth requirements are reduced. In this dissertation, we discuss new approaches from three different research areas. All approaches target at the reduction of the processing complexity to achieve an interactive visualization of large datasets. In the second part, we introduce applications of the presented ap-proaches. Specifically, we introduce the new VIVENDI system for the interactive virtual endoscopy and other applications from mechanical engineering, scientific computing, and architecture.The size of datasets in scientific computing is rapidly increasing. This increase is caused by a boost of processing power in the past years, which in turn was invested in an increase of the accuracy and the size of the models. A similar trend enabled a significant improvement of medical scanners; more than 1000 slices of a resolution of 512x512 can be generated by modern scanners in daily practice. Even in computer-aided engineering typical models eas-ily contain several million polygons. Unfortunately, the data complexity is growing faster than the rendering performance of modern computer systems. This is not only due to the slower growing graphics performance of the graphics subsystems, but in particular because of the significantly slower growing memory bandwidth for the transfer of the geometry and image data from the main memory to the graphics accelerator. Large model visualization addresses this growing divide between data complexity and rendering performance. Most methods focus on the reduction of the geometric or pixel complexity, and hence also the memory bandwidth requirements are reduced. In this dissertation, we discuss new approaches from three different research areas. All approaches target at the reduction of the processing complexity to achieve an interactive visualization of large datasets. In the second part, we introduce applications of the presented ap-proaches. Specifically, we introduce the new VIVENDI system for the interactive virtual endoscopy and other applications from mechanical engineering, scientific computing, and architecture

    Medical Volume Visualization Beyond Single Voxel Values

    Full text link

    Fast Visualization by Shear-Warp using Spline Models for Data Reconstruction

    Full text link
    This work concerns oneself with the rendering of huge three-dimensional data sets. The target thereby is the development of fast algorithms by also applying recent and accurate volume reconstruction models to obtain at most artifact-free data visualizations. In part I a comprehensive overview on the state of the art in volume rendering is given. Part II is devoted to the recently developed trivariate (linear,) quadratic and cubic spline models defined on symmetric tetrahedral partitions directly obtained by slicing volumetric partitions of a three-dimensional domain. This spline models define piecewise polynomials of total degree (one,) two and three with respect to a tetrahedron, i.e. the local splines have the lowest possible total degree and are adequate for efficient and accurate volume visualization. The following part III depicts in a step by step manner a fast software-based rendering algorithm, called shear-warp. This algorithm is prominent for its ability to generate projections of volume data at real time. It attains the high rendering speed by using elaborate data structures and extensive pre-computation, but at the expense of data redundancy and visual quality of the finally obtained rendering results. However, to circumvent these disadvantages a further development is specified, where new techniques and sophisticated data structures allow combining the fast shear-warp with the accurate ray-casting approach. This strategy and the new data structures not only grant a unification of the benefits of both methods, they even easily admit for adjustments to trade-off between rendering speed and precision. With this further development also the 3-fold data redundancy known from the original shear-warp approach is removed, allowing the rendering of even larger three-dimensional data sets more quickly. Additionally, real trivariate data reconstruction models, as discussed in part II, are applied together with the new ideas to onward the precision of the new volume rendering method, which also lead to a one order of magnitude faster algorithm compared to traditional approaches using similar reconstruction models. In part IV, a hierarchy-based rendering method is developed which utilizes a wavelet decomposition of the volume data, an octree structure to represent the sparse data set, the splines from part II and a new shear-warp visualization algorithm similar to that presented in part III. This thesis is concluded by the results centralized in part V

    Development of advanced geometric models and acceleration techniques for Monte Carlo simulation in Medical Physics

    Get PDF
    Els programes de simulació Monte Carlo de caràcter general s'utilitzen actualment en una gran varietat d'aplicacions.Tot i això, els models geomètrics implementats en la majoria de programes imposen certes limitacions a la forma dels objectes que es poden definir. Aquests models no són adequats per descriure les superfícies arbitràries que es troben en estructures anatòmiques o en certs aparells mèdics i, conseqüentment, algunes aplicacions que requereixen l'ús de models geomètrics molt detallats no poden ser acuradament estudiades amb aquests programes.L'objectiu d'aquesta tesi doctoral és el desenvolupament de models geomètrics i computacionals que facilitin la descripció dels objectes complexes que es troben en aplicacions de física mèdica. Concretament, dos nous programes de simulació Monte Carlo basats en PENELOPE han sigut desenvolupats. El primer programa, penEasy, utilitza un algoritme de caràcter general estructurat i inclou diversos models de fonts de radiació i detectors que permeten simular fàcilment un gran nombre d'aplicacions. Les noves rutines geomètriques utilitzades per aquest programa, penVox, extenen el model geomètric estàndard de PENELOPE, basat en superfícices quàdriques, per permetre la utilització d'objectes voxelitzats. Aquests objectes poden ser creats utilitzant la informació anatòmica obtinguda amb una tomografia computeritzada i, per tant, aquest model geomètric és útil per simular aplicacions que requereixen l'ús de l'anatomia de pacients reals (per exemple, la planificació radioterapèutica). El segon programa, penMesh, utilitza malles de triangles per definir la forma dels objectes simulats. Aquesta tècnica, que s'utilitza freqüentment en el camp del disseny per ordinador, permet representar superfícies arbitràries i és útil per simulacions que requereixen un gran detall en la descripció de la geometria, com per exemple l'obtenció d'imatges de raig x del cos humà.Per reduir els inconvenients causats pels llargs temps d'execució, els algoritmes implementats en els nous programes s'han accelerat utilitzant tècniques sofisticades, com per exemple una estructura octree. També s'ha desenvolupat un paquet de programari per a la paral·lelització de simulacions Monte Carlo, anomentat clonEasy, que redueix el temps real de càlcul de forma proporcional al nombre de processadors que s'utilitzen.Els programes de simulació que es presenten en aquesta tesi són gratuïts i de codi lliures. Aquests programes s'han provat en aplicacions realistes de física mèdica i s'han comparat amb altres programes i amb mesures experimentals.Per tant, actualment ja estan llestos per la seva distribució pública i per la seva aplicació a problemes reals.Monte Carlo simulation of radiation transport is currently applied in a large variety of areas. However, the geometric models implemented in most general-purpose codes impose limitations on the shape of the objects that can be defined. These models are not well suited to represent the free-form (i.e., arbitrary) shapes found in anatomic structures or complex medical devices. As a result, some clinical applications that require the use of highly detailed phantoms can not be properly addressed.This thesis is devoted to the development of advanced geometric models and accelration techniques that facilitate the use of state-of-the-art Monte Carlo simulation in medical physics applications involving detailed anatomical phantoms. To this end, two new codes, based on the PENELOPE package, have been developed. The first code, penEasy, implements a modular, general-purpose main program and provides various source models and tallies that can be readily used to simulate a wide spectrum of problems. Its associated geometry routines, penVox, extend the standard PENELOPE geometry, based on quadric surfaces, to allow the definition of voxelised phantoms. This kind of phantoms can be generated using the information provided by a computed tomography and, therefore, penVox is convenient for simulating problems that require the use of the anatomy of real patients (e.g., radiotherapy treatment planning). The second code, penMesh, utilises closed triangle meshes to define the boundary of each simulated object. This approach, which is frequently used in computer graphics and computer-aided design, makes it possible to represent arbitrary surfaces and it is suitable for simulations requiring a high anatomical detail (e.g., medical imaging).A set of software tools for the parallelisation of Monte Carlo simulations, clonEasy, has also been developed. These tools can reduce the simulation time by a factor that is roughly proportional to the number of processors available and, therefore, facilitate the study of complex settings that may require unaffordable execution times in a sequential simulation.The computer codes presented in this thesis have been tested in realistic medical physics applications and compared with other Monte Carlo codes and experimental data. Therefore, these codes are ready to be publicly distributed as free and open software and applied to real-life problems.Postprint (published version
    corecore