5 research outputs found

    Three-cornered coevolution learning classifier systems for classification

    No full text
    This thesis introduces a Three-Cornered Coevolution System that is capable of addressing classification tasks through coevolution (coadaptive evolution) where three different agents (i.e. a generation agent and two classification agents) learn and adapt to the changes of the problems without human involvement. In existing pattern classification systems, humans usually play a major role in creating and controlling the problem domain. In particular, humans set up and tune the problem’s difficulty. A motivation of the work for this thesis is to design and develop an automatic pattern generation and classification system that can generate various sets of exemplars to be learned from and perform the classification tasks autonomously. The system should be able to automatically adjust the problem’s difficulty based on the learners’ ability to learn (e.g. determining features in the problem that affect the learners’ performance in order to generate various problems for classification at different levels of difficulty). Further, the system should be capable of addressing the classification tasks through coevolution (coadaptive evolution), where the participating agents learn and adapt to the changes of the problems without human participation. Ultimately, Learning Classifier System (LCS) is chosen to be implemented in the participating agents. LCS has several potential characteristics, such as interpretability, generalisation capability and variations in representation, that are suitable for the system. The work can be broken down into three main phases. Phase 1 is to develop an automated evolvable problem generator to autonomously generate various problems for classification, Phase 2 is to develop the Two-Cornered Coevolution System for classification, and Phase 3 is to develop the Three-Cornered Coevolution System for classification. Phase 1 is necessary in order to create a set of problem domains for classification (i.e. image-based data or artificial data) that can be generated automatically, where the difficulty levels of the problem can be adjusted and tuned. Phase 2 is needed to investigate the generation agent’s ability to autonomously tune and adjust the problem’s difficulty based on the classification agent’s performance. Phase 2 is a standard coevolution system, where two different agents evolve to adapt to the changes of the problem. The classification agent evolves to learn various classification problems, while the generation agent evolves to tune and adjust the problem’s difficulty based on the learner’s ability to learn. Phase 3 is the final research goal. This phase develops a new coevolution system where three different agents evolve to adapt to the changes of the problem. Both of the classification agents evolve to learn various classification problems, while the generation agent evolves to tune and adjust the problem’s difficulty based on the classification agents’ ability to learn. The classification agents use different styles of learning techniques (i.e. supervised or reinforcement learning techniques) to learn the problems. Based on the classification agents’ ability (i.e. the difference in performance between the classification agents) the generation agent adjusts and creates various problems for classification at different levels of difficulty (i.e. various ‘hard’ problems). The Three-Cornered Coevolution System offers a great potential for autonomous learning and provides useful insight into coevolution learning over the standard studies of pattern recognition. The system is capable of autonomously generating various problems, learning and providing insight into each learning system’s ability by determining the problem domains where they perform relatively well. This is in contrast to humans having to determine the problem domains

    Three-cornered coevolution learning classifier systems for classification tasks

    No full text
    The Three-Cornered Coevolution concept describes a framework where artificial problems may be generated in concert with classification agents in order to provide insight into their relationships. This is unlike standard studies where humans set a problem's difficulty, which may have bias or lack understanding of the multiple interactions of a problem's characteristics, such as noise in conjunction with class imbalance. Previous studies have shown that it is feasible to generate problems with one agent in relation to a single classification agent's performance, but when to adjust the problem difficulty was manually set. This paper introduces a second classification agent to trigger the coevolutionary process within the system, where its functionality and effect on the system requires investigation. The classification agents, in this case Learning Classifier Systems, use different styles of learning techniques (e.g. supervised or reinforcement learning techniques) to learn the problems. Experiments show that the realised system is capable of autonomously generating various problems, triggering learning and providing insight into each learning system's ability by determining the problem domains where they perform relatively well - this is in contrast to humans having to determine the problem domains.</p

    Learning shepherding behavior

    Get PDF
    Roboter, die Schafe hüten sowie die dazu nötigen Strategien zum Bewegen von Individuen zu einem Ziel, bieten vielseitige Anwendungen wie z. B. die Rettung von Menschen aus bedrohlichen Lagen oder der Einsatz schwimmender Roboter zur Beseitigung von Ölteppichen. In dieser Arbeit nutzen wir ein Multiagentensystem als Modell der Roboter und Schafe. Wir untersuchen die Komplexität des Schafehütens und zeigen einen Greedy-Algorithmus, der in linearer Laufzeit eine fast optimale Lösung berechnet. Weiterhin analysieren wir, wie solche Strategien gelernt werden können, da maschinelles Lernen oftmals vorteilhafte Lösungen findet. Im Folgenden nutzen wir Reinforcement Learning (RL) als Lernmethode. Damit RL Agenten ihr gelerntes Wissen auch in kontinuierlichen oder sehr großen Zustandsräumen (wie im betrachteten Szenario) vorhalten können, sind Methoden zur Wissensabstraktion nötig. Unsere Methoden kombinieren RL mit adaptiven neuronalen Verfahren und erlauben dem Agenten gleichzeitig Strategien sowie Darstellungen dieses Wissens zu lernen. Beide Verfahren basieren auf dem unüberwachten Lernverfahren Growing Neural Gas, das eine Vektorquantisierung lernt, indem es neuronale Einheiten im Eingaberaums platziert und bewegt. GNG-Q gruppiert benachbarte Zustände die gleiches Verhalten erfordern (Zustandsraumapproximation); I-GNG-Q wiederum kombiniert Wissen, um eine glatte Bewertungsfunktion zu erhalten (Approximation der Bewertungsfunktion des RL-Agenten). Beide Verfahren beobachten das Verhalten des Lerners um Stellen der Approximation zu finden, die noch verfeinert werden müssen. Die Hauptvorteile unserer Verfahren sind u.a., dass sie ohne Kenntnis des Modells der Umgebung automatisch eine passende Auflösung der Approximation bestimmen. Die experimentelle Analyse unterstreicht, dass unsere Methoden sehr effiziente und effektive Strategien erzeugen.Artificial shepherding strategies, i.e. using robots to move individuals to given locations, have many applications. For example, people can be guided by mobile robots from dangerous places or swimming robots may help to clean up oil spills. This thesis uses a multiagent system to model the robots and sheep. We analyze the complexity of the shepherding task and present a greedy algorithm that only needs linear time to compute a solution that is proven to be close to optimal. Additionally, we analyze to what extend such strategies can be learned as learning usually provides powerful solutions. This thesis focuses on reinforcement learning (RL) as learning method. To enable RL agents to use their knowledge more efficiently in continuous or large state spaces (as e.g. in the shepherding task), methods to transfer knowledge to unseen but similar situations are required. The approaches developed in this thesis, GNG-Q and I-GNG-Q, combine RL with adaptive neural algorithms and enable the agent to learn behavior in parallel with its representation. Both are based upon the growing neural gas, which is an unsupervised learning approach that learns a vector quantization by placing and adjusting units in the input space. GNG-Q groups states that are spatial close and share the same behavior while I-GNG-Q combines the learned behavior from a larger area of the approximation which results in smoother value functions. Thus, GNG-Q performs a state-space abstraction and I-GNG-Q approximates the value function. Both methods monitor the agent's policy during learning to find regions of the approximation that have to be refined. Amongst many others, the core advantages of our approaches are that they do not need the model of the environment and that the resolution of the approximation is determined automatically. The experimental evaluation underlines that the behaviors learned using our approaches are highly efficient and effective.Michael BaumannTag der Verteidigung: 22.01.2016Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn, Univ., Dissertation, 201

    Three-cornered coevolution learning classifier systems for classification

    No full text
    This thesis introduces a Three-Cornered Coevolution System that is capable of addressing classification tasks through coevolution (coadaptive evolution) where three different agents (i.e. a generation agent and two classification agents) learn and adapt to the changes of the problems without human involvement. In existing pattern classification systems, humans usually play a major role in creating and controlling the problem domain. In particular, humans set up and tune the problem’s difficulty. A motivation of the work for this thesis is to design and develop an automatic pattern generation and classification system that can generate various sets of exemplars to be learned from and perform the classification tasks autonomously. The system should be able to automatically adjust the problem’s difficulty based on the learners’ ability to learn (e.g. determining features in the problem that affect the learners’ performance in order to generate various problems for classification at different levels of difficulty). Further, the system should be capable of addressing the classification tasks through coevolution (coadaptive evolution), where the participating agents learn and adapt to the changes of the problems without human participation. Ultimately, Learning Classifier System (LCS) is chosen to be implemented in the participating agents. LCS has several potential characteristics, such as interpretability, generalisation capability and variations in representation, that are suitable for the system. The work can be broken down into three main phases. Phase 1 is to develop an automated evolvable problem generator to autonomously generate various problems for classification, Phase 2 is to develop the Two-Cornered Coevolution System for classification, and Phase 3 is to develop the Three-Cornered Coevolution System for classification. Phase 1 is necessary in order to create a set of problem domains for classification (i.e. image-based data or artificial data) that can be generated automatically, where the difficulty levels of the problem can be adjusted and tuned. Phase 2 is needed to investigate the generation agent’s ability to autonomously tune and adjust the problem’s difficulty based on the classification agent’s performance. Phase 2 is a standard coevolution system, where two different agents evolve to adapt to the changes of the problem. The classification agent evolves to learn various classification problems, while the generation agent evolves to tune and adjust the problem’s difficulty based on the learner’s ability to learn. Phase 3 is the final research goal. This phase develops a new coevolution system where three different agents evolve to adapt to the changes of the problem. Both of the classification agents evolve to learn various classification problems, while the generation agent evolves to tune and adjust the problem’s difficulty based on the classification agents’ ability to learn. The classification agents use different styles of learning techniques (i.e. supervised or reinforcement learning techniques) to learn the problems. Based on the classification agents’ ability (i.e. the difference in performance between the classification agents) the generation agent adjusts and creates various problems for classification at different levels of difficulty (i.e. various ‘hard’ problems). The Three-Cornered Coevolution System offers a great potential for autonomous learning and provides useful insight into coevolution learning over the standard studies of pattern recognition. The system is capable of autonomously generating various problems, learning and providing insight into each learning system’s ability by determining the problem domains where they perform relatively well. This is in contrast to humans having to determine the problem domains.</p

    Three-cornered coevolution learning classifier systems for classification

    No full text
    This thesis introduces a Three-Cornered Coevolution System that is capable of addressing classification tasks through coevolution (coadaptive evolution) where three different agents (i.e. a generation agent and two classification agents) learn and adapt to the changes of the problems without human involvement. In existing pattern classification systems, humans usually play a major role in creating and controlling the problem domain. In particular, humans set up and tune the problem’s difficulty. A motivation of the work for this thesis is to design and develop an automatic pattern generation and classification system that can generate various sets of exemplars to be learned from and perform the classification tasks autonomously. The system should be able to automatically adjust the problem’s difficulty based on the learners’ ability to learn (e.g. determining features in the problem that affect the learners’ performance in order to generate various problems for classification at different levels of difficulty). Further, the system should be capable of addressing the classification tasks through coevolution (coadaptive evolution), where the participating agents learn and adapt to the changes of the problems without human participation. Ultimately, Learning Classifier System (LCS) is chosen to be implemented in the participating agents. LCS has several potential characteristics, such as interpretability, generalisation capability and variations in representation, that are suitable for the system. The work can be broken down into three main phases. Phase 1 is to develop an automated evolvable problem generator to autonomously generate various problems for classification, Phase 2 is to develop the Two-Cornered Coevolution System for classification, and Phase 3 is to develop the Three-Cornered Coevolution System for classification. Phase 1 is necessary in order to create a set of problem domains for classification (i.e. image-based data or artificial data) that can be generated automatically, where the difficulty levels of the problem can be adjusted and tuned. Phase 2 is needed to investigate the generation agent’s ability to autonomously tune and adjust the problem’s difficulty based on the classification agent’s performance. Phase 2 is a standard coevolution system, where two different agents evolve to adapt to the changes of the problem. The classification agent evolves to learn various classification problems, while the generation agent evolves to tune and adjust the problem’s difficulty based on the learner’s ability to learn. Phase 3 is the final research goal. This phase develops a new coevolution system where three different agents evolve to adapt to the changes of the problem. Both of the classification agents evolve to learn various classification problems, while the generation agent evolves to tune and adjust the problem’s difficulty based on the classification agents’ ability to learn. The classification agents use different styles of learning techniques (i.e. supervised or reinforcement learning techniques) to learn the problems. Based on the classification agents’ ability (i.e. the difference in performance between the classification agents) the generation agent adjusts and creates various problems for classification at different levels of difficulty (i.e. various ‘hard’ problems). The Three-Cornered Coevolution System offers a great potential for autonomous learning and provides useful insight into coevolution learning over the standard studies of pattern recognition. The system is capable of autonomously generating various problems, learning and providing insight into each learning system’s ability by determining the problem domains where they perform relatively well. This is in contrast to humans having to determine the problem domains
    corecore