102,748 research outputs found

    Kernel Spectral Clustering and applications

    Full text link
    In this chapter we review the main literature related to kernel spectral clustering (KSC), an approach to clustering cast within a kernel-based optimization setting. KSC represents a least-squares support vector machine based formulation of spectral clustering described by a weighted kernel PCA objective. Just as in the classifier case, the binary clustering model is expressed by a hyperplane in a high dimensional space induced by a kernel. In addition, the multi-way clustering can be obtained by combining a set of binary decision functions via an Error Correcting Output Codes (ECOC) encoding scheme. Because of its model-based nature, the KSC method encompasses three main steps: training, validation, testing. In the validation stage model selection is performed to obtain tuning parameters, like the number of clusters present in the data. This is a major advantage compared to classical spectral clustering where the determination of the clustering parameters is unclear and relies on heuristics. Once a KSC model is trained on a small subset of the entire data, it is able to generalize well to unseen test points. Beyond the basic formulation, sparse KSC algorithms based on the Incomplete Cholesky Decomposition (ICD) and L0L_0, L1,L0+L1L_1, L_0 + L_1, Group Lasso regularization are reviewed. In that respect, we show how it is possible to handle large scale data. Also, two possible ways to perform hierarchical clustering and a soft clustering method are presented. Finally, real-world applications such as image segmentation, power load time-series clustering, document clustering and big data learning are considered.Comment: chapter contribution to the book "Unsupervised Learning Algorithms

    Twin Learning for Similarity and Clustering: A Unified Kernel Approach

    Full text link
    Many similarity-based clustering methods work in two separate steps including similarity matrix computation and subsequent spectral clustering. However, similarity measurement is challenging because it is usually impacted by many factors, e.g., the choice of similarity metric, neighborhood size, scale of data, noise and outliers. Thus the learned similarity matrix is often not suitable, let alone optimal, for the subsequent clustering. In addition, nonlinear similarity often exists in many real world data which, however, has not been effectively considered by most existing methods. To tackle these two challenges, we propose a model to simultaneously learn cluster indicator matrix and similarity information in kernel spaces in a principled way. We show theoretical relationships to kernel k-means, k-means, and spectral clustering methods. Then, to address the practical issue of how to select the most suitable kernel for a particular clustering task, we further extend our model with a multiple kernel learning ability. With this joint model, we can automatically accomplish three subtasks of finding the best cluster indicator matrix, the most accurate similarity relations and the optimal combination of multiple kernels. By leveraging the interactions between these three subtasks in a joint framework, each subtask can be iteratively boosted by using the results of the others towards an overall optimal solution. Extensive experiments are performed to demonstrate the effectiveness of our method.Comment: Published in AAAI 201

    Deep clustering: Discriminative embeddings for segmentation and separation

    Full text link
    We address the problem of acoustic source separation in a deep learning framework we call "deep clustering." Rather than directly estimating signals or masking functions, we train a deep network to produce spectrogram embeddings that are discriminative for partition labels given in training data. Previous deep network approaches provide great advantages in terms of learning power and speed, but previously it has been unclear how to use them to separate signals in a class-independent way. In contrast, spectral clustering approaches are flexible with respect to the classes and number of items to be segmented, but it has been unclear how to leverage the learning power and speed of deep networks. To obtain the best of both worlds, we use an objective function that to train embeddings that yield a low-rank approximation to an ideal pairwise affinity matrix, in a class-independent way. This avoids the high cost of spectral factorization and instead produces compact clusters that are amenable to simple clustering methods. The segmentations are therefore implicitly encoded in the embeddings, and can be "decoded" by clustering. Preliminary experiments show that the proposed method can separate speech: when trained on spectrogram features containing mixtures of two speakers, and tested on mixtures of a held-out set of speakers, it can infer masking functions that improve signal quality by around 6dB. We show that the model can generalize to three-speaker mixtures despite training only on two-speaker mixtures. The framework can be used without class labels, and therefore has the potential to be trained on a diverse set of sound types, and to generalize to novel sources. We hope that future work will lead to segmentation of arbitrary sounds, with extensions to microphone array methods as well as image segmentation and other domains.Comment: Originally submitted on June 5, 201

    Online Spectral Clustering on Network Streams

    Get PDF
    Graph is an extremely useful representation of a wide variety of practical systems in data analysis. Recently, with the fast accumulation of stream data from various type of networks, significant research interests have arisen on spectral clustering for network streams (or evolving networks). Compared with the general spectral clustering problem, the data analysis of this new type of problems may have additional requirements, such as short processing time, scalability in distributed computing environments, and temporal variation tracking. However, to design a spectral clustering method to satisfy these requirements certainly presents non-trivial efforts. There are three major challenges for the new algorithm design. The first challenge is online clustering computation. Most of the existing spectral methods on evolving networks are off-line methods, using standard eigensystem solvers such as the Lanczos method. It needs to recompute solutions from scratch at each time point. The second challenge is the parallelization of algorithms. To parallelize such algorithms is non-trivial since standard eigen solvers are iterative algorithms and the number of iterations can not be predetermined. The third challenge is the very limited existing work. In addition, there exists multiple limitations in the existing method, such as computational inefficiency on large similarity changes, the lack of sound theoretical basis, and the lack of effective way to handle accumulated approximate errors and large data variations over time. In this thesis, we proposed a new online spectral graph clustering approach with a family of three novel spectrum approximation algorithms. Our algorithms incrementally update the eigenpairs in an online manner to improve the computational performance. Our approaches outperformed the existing method in computational efficiency and scalability while retaining competitive or even better clustering accuracy. We derived our spectrum approximation techniques GEPT and EEPT through formal theoretical analysis. The well established matrix perturbation theory forms a solid theoretic foundation for our online clustering method. We facilitated our clustering method with a new metric to track accumulated approximation errors and measure the short-term temporal variation. The metric not only provides a balance between computational efficiency and clustering accuracy, but also offers a useful tool to adapt the online algorithm to the condition of unexpected drastic noise. In addition, we discussed our preliminary work on approximate graph mining with evolutionary process, non-stationary Bayesian Network structure learning from non-stationary time series data, and Bayesian Network structure learning with text priors imposed by non-parametric hierarchical topic modeling

    Peaks in the cosmological density field: parameter constraints from 2dF Galaxy Redshift Survey data

    Full text link
    We use the number density of peaks in the smoothed cosmological density field taken from the 2dF Galaxy Redshift Survey to constrain parameters related to the power spectrum of mass fluctuations, n (the spectral index), dn/d(lnk) (rolling in the spectral index), and the neutrino mass, m_nu. In a companion paper we use N-body simulations to study how the peak density responds to changes in the power spectrum, the presence of redshift distortions and the relationship between galaxies and dark matter halos. In the present paper we make measurements of the peak density from 2dF Galaxy Redshift Survey data, for a range of smoothing filter scales from 4-33 h^-1 Mpc. We use these measurements to constrain the cosmological parameters, finding n=1.36 (+0.75)(-0.64), m_nu < 1.76 eV, dn/d(lnk)=-0.012 (+0.192)(-0.208), at the 68 % confidence level, where m_nu is the total mass of three massive neutrinos. At 95% confidence we find m_nu< 2.48 eV. These measurements represent an alternative way to constrain cosmological parameters to the usual direct fits to the galaxy power spectrum, and are expected to be relatively insensitive to non-linear clustering evolution and galaxy biasing.Comment: Accepted for Publication in MNRAS on Sept 25, 2009. Abstract modified to remove LaTex markup

    Sequence-based Multiscale Model (SeqMM) for High-throughput chromosome conformation capture (Hi-C) data analysis

    Full text link
    In this paper, I introduce a Sequence-based Multiscale Model (SeqMM) for the biomolecular data analysis. With the combination of spectral graph method, I reveal the essential difference between the global scale models and local scale ones in structure clustering, i.e., different optimization on Euclidean (or spatial) distances and sequential (or genomic) distances. More specifically, clusters from global scale models optimize Euclidean distance relations. Local scale models, on the other hand, result in clusters that optimize the genomic distance relations. For a biomolecular data, Euclidean distances and sequential distances are two independent variables, which can never be optimized simultaneously in data clustering. However, sequence scale in my SeqMM can work as a tuning parameter that balances these two variables and deliver different clusterings based on my purposes. Further, my SeqMM is used to explore the hierarchical structures of chromosomes. I find that in global scale, the Fiedler vector from my SeqMM bears a great similarity with the principal vector from principal component analysis, and can be used to study genomic compartments. In TAD analysis, I find that TADs evaluated from different scales are not consistent and vary a lot. Particularly when the sequence scale is small, the calculated TAD boundaries are dramatically different. Even for regions with high contact frequencies, TAD regions show no obvious consistence. However, when the scale value increases further, although TADs are still quite different, TAD boundaries in these high contact frequency regions become more and more consistent. Finally, I find that for a fixed local scale, my method can deliver very robust TAD boundaries in different cluster numbers.Comment: 22 PAGES, 13 FIGURE
    • …
    corecore