471 research outputs found

    III-V Nanowire MOSFET High-Frequency Technology Platform

    Get PDF
    This thesis addresses the main challenges in using III-V nanowireMOSFETs for high-frequency applications by building a III-Vvertical nanowire MOSFET technology library. The initial devicelayout is designed, based on the assessment of the current III-V verticalnanowire MOSFET with state-of-the-art performance. The layout providesan option to scale device dimensions for the purpose of designing varioushigh-frequency circuits. The nanowire MOSFET device is described using1D transport theory, and modeled with a compact virtual source model.Device assessment is performed at high frequencies, where sidewall spaceroverlaps have been identified and mitigated in subsequent design iterations.In the final stage of the design, the device is simulated with fT > 500 GHz,and fmax > 700 GHz.Alongside the III-V vertical nanowire device technology platform, adedicated and adopted RF and mm-wave back-end-of-line (BEOL) hasbeen developed. Investigation into the transmission line parameters revealsa line attenuation of 0.5 dB/mm at 50 GHz, corresponding to state-ofthe-art values in many mm-wave integrated circuit technologies. Severalkey passive components have been characterized and modeled. The deviceinterface module - an interconnect via stack, is one of the prominentcomponents. Additionally, the approach is used to integrate ferroelectricMOS capacitors, in a unique setting where their ferroelectric behavior iscaptured at RF and mm-wave frequencies.Finally, circuits have been designed. A proof-of-concept circuit, designedand fabricated with III-V lateral nanowire MOSFETs and mm-wave BEOL, validates the accuracy of the BEOL models, and the circuit design. Thedevice scaling is shown to be reflected into circuit performance, in aunique device characterization through an amplifier noise-matched inputstage. Furthermore, vertical-nanowire-MOSFET-based circuits have beendesigned with passive feedback components that resonate with the devicegate-drain capacitance. The concept enables for device unilateralizationand gain boosting. The designed low-noise amplifiers have matching pointsindependent on the MOSFET gate length, based on capacitance balancebetween the intrinsic and extrinsic capacitance contributions, in a verticalgeometry. The proposed technology platform offers flexibility in device andcircuit design and provides novel III-V vertical nanowire MOSFET devicesand circuits as a viable option to future wireless communication systems

    Modélisation distribuée et évolutive du GaN HEMT

    Get PDF
    L’industrie de télécommunication et les satellites se base majoritairement sur les technologies Si et GaAs. La demande croissante des hauts débits de données entraine une facture élevée en énergie. En outre, la saturation de la bande des basses fréquences, le besoin des débits élevés et les exigences de la haute puissance imposait l’utilisation de la bande hautes fréquences. Dans le but de résoudre les problèmes cités auparavant, la technologie GaN est introduite comme un candidat prometteur qui peut offrir de la haute puissance, taille du circuit plus faible avec une meilleure stabilité mécanique aux environnements hostiles/milieux agressifs. À titre d’exemple, l‘agence spatiale européenne sont en cours de développement d’un circuit à base du GaN sur substrat en Si pour faible cout, une hautes performance et une grande fiabilité. La technologie GaN est assez mature pour proposer de nouveaux systèmes intégrés utilisés pour les puissances microonde ce qui permet une réduction considérable de la taille du système. Étant un semiconducteur à grande bande interdite, GaN peut offrir une haute puissance sous hautes températures (>225oC) avec une bonne stabilité mécanique. Elle présente un facteur de bruit faible, qui est intéressant notamment pour les circuits intégrés aux ondes millimétriques. À noter que la mobilité du GaN par rapport à la température est assez élevée pour proposer des amplificateurs dans la bande W. Avec le progrès du procédé de fabrication du GaN, notre objectif est l’introduction de cette technologie dans des applications industrielles. À cette fin, on désire avoir un modèle du dispositif qui correspond à la meilleure performance. Ensuite, on veut le valider dans une modélisation du circuit. Cette thèse, basée sur la technologie GaN unique développée au 3IT, a pour objectif l’amélioration de l’outil de conception en réduisant son erreur avec une validation de son utilisation dans la conception du circuit. Ce travail est réalisé pour la première fois au 3IT avec des résultats de simulation pour une conception idéale d’un circuit MMIC ainsi que sa démonstration. Une caractérisation des échantillons a été réalisée avec objectif d’extraction de données qui vont servir à l’alimentation de modélisation des transistors sur l’outil ADS. Une fois complétée, la modélisation a été validée par une modélisation des petits et grands signaux et a été testée par une mesure load-pull. Enfin, ce modèle a été utilisé lors de la conception d’un amplificateur pour les applications RF. L’innovation de ce travail réside dans la modélisation de la résistance d’une grille large sous forme de quadripôles parallèles à structure 3D (ou à résistances de grille distribuées) du transistor MOSHEMT GaN. La conception et la fabrication de l’amplificateur à haute puissance (HPA) aux fréquences microondes (≤4GHz) sont réalisés au LNN du 3IT et inclus une couche d’oxyde de grille afin de réduire le courant de fuite notamment pour les tensions Vgs élevées, la grille du transistor forme un serpentin pour fournir une puissance de sortie élevée avec un encombrement spatial minimal et une grille présentant une électrode de champ pour permettre d’augmenter la tension de claquage.Abstract : The telecommunication and satellite industry is mainly relying on Si and GaAs technologies as the demand for a high data rate is continuously growing, leading to higher power consumption. Moreover, the lower frequency band's saturation, the need for high data rate, and high-power force to utilize the high-frequency band. In pursuit of solving the issues mentioned earlier, GaN technology has been introduced as a promising candidate that can offer high power at a smaller circuit footprint and higher mechanical stability in harsh environments. For example, currently, the European space agency (ESA) is developing an integrated circuit with GaN on Si substrate for low cost, high performance, and high reliability. GaN technology is sufficiently mature to propose integrated new systems which are needed for microwave power range. This technology reduces the size of the system considerably. GaN is a wide bandgap semiconductor which can offer remarkably high power at high temperature (>225℃), and it is very stable mechanically. It presents a low noise factor, very interesting for a millimeter-wave integrated circuit. Finally, the mobility of GaN vs. temperature is sufficiently elevated to propose a power amplifier in W-Band. With the improvement of the GaN process, our objective is to introduce this technology for industrial applications. For this purpose, we wish to have a better model of the device that corresponds to the best performance and then validate it by using this model in a circuit. Based on the 3IT's GaN process, which is unique in its context, this thesis aims to improve the design kit by reducing the design model's error and validating it by using it in circuit design. This work is the first to realize in 3IT with simulation results to design an MMIC circuit for demonstration. I first characterized the new samples by performing different measurements than using these measurement data; transistor is modeled in ADS software. Once the model was completed, it is validated by small-signal modeling, and then the large-signal model is tested with non-linear capacitances, current source, and transconductance modeling. Finally, we used this model to design a power amplifier for RF application. The innovation comes from modeling large gate resistance as distributed gate resistance for GaN MOSHEMT transistor and then designing high-power amplifier (HPA) in the frequency range (≤ 4GHz) while using 3IT GaN process which includes first oxide layer to have low gate current and more voltage of Vgs, the second transistor is meander to have high power and third, field plate - gate for high breakdown voltage

    Analysis and design of a high power millimeter-wave power amplifier in a SiGe BiCMOS technology

    Get PDF
    Our current society is characterized by an ever increasing need for bandwidth leading towards the exploration of new parts of the electromagnetic spectrum for data transmission. This results in a rising interest and development of millimeter-wave (mm-wave) circuits which hold the promise of short range multi-gigabit wireless transmissions at 60GHz. These relatively new applications are to co-exist with more established mm-wave consumer products including satellite systems in the Ka-band (26.5GHz - 40GHz) allowing e.g.: video broadcasting, voice over IP (VoIP), internet acces to remote areas, ... Both need significant linear power amplification due to the high attenuation typical for this part of the spectrum, however, satellite systems demand a saturated output power which is easily an order of magnitude larger (output powers in excess of 30dBm / 1W). Monolithic microwave integrated circuits (MMICs) employing III-V chip technologies, e.g.: gallium arsenide (GaAs), gallium nitride (GaN), have historically been the preferred choice to implement efficient mm-wave power amplifiers (PA) with a high saturated output power (>30dBm). To further increase the commercial viability of consumer products in this market segment a low manufacturing cost for the power amplifier, together with the possible integration of additional functions, is highly desirable. These features are the strongpoint of silicon based chip technologies like CMOS and SiGe BiCMOS. However, these technologies have a breakdown voltage typically below 2V for nodes capable of millimeter-wave applications while III-V transistors with equivalent frequency performance demonstrate breakdown voltages in excess of 8V. Because of this, output powers of CMOS and SiGe BiCMOS Ka-band power amplifiers rarely exceed 20dBm which poses the main hurdle for using these technologies in satellite communication (SATCOM). To overcome the limited output power of a single amplifying cell in a silicon technology, caused by the low breakdown voltage, multiple power amplifiers cells need to have their output power effectively combined on-chip. This requires the on-chip integration of high-Q passives within a relative small area to realize both the impedance transformation, to create the optimal load impedance for the different amplifier cells, and implement an efficient on-chip power combination network. Compared to III-V technologies this is again a challenge due to the use of a silicon substrate which introduces higher losses. Once a large enough on-chip output power is created, the issue of launching this signal to the outside world remains. Moreover, due to the limited efficiency of mm-wave PAs, the generated on-chip heat will increase when larger output power are required. This means a chipto-board interface with a low thermal resistance and a low loss electrical connection needs to be devised. Proof of the viability of silicon as a serious candidate for the integration of medium and high power Ka-band amplifiers will only be delivered by long term research and the actual creation of such an amplifier. In this context, the initial goal for the presented work is proposed. This consists of the creation of a power amplifier with a saturated output power above 24dBm (preferably 27dBm), a gain larger than 20dB and an efficiency in excess of 10% (preferably 15%). These specifications where conceived with the precondition of using a 250nm SiGe BiCMOS technology (IHP’s SG25H3) with an fT of 110GHz and a collector to emitter breakdown voltage in open base conditions (BVCEO) of 2.3V. The use of this technology is a significant challenge due to the limited speed, rule of thumb is to have at least one fifth of the fT as the operating frequency, which reflects in the attainable power added efficiency (PAE). On the other hand, proving the possible implementation in this “older” technology shows great potential towards the future integration in a fast technology (e.g.: IHP’s SG13G2, ft =300GHz). Next to issues caused by limitations of the chip technology, the proposed specifications allows to identify generic difficulties with high power silicon PA design, e.g.: design of efficient on-chip power combiners, thermal management, single-ended to differential conversion, ... As this work is of an academic nature the intention of this design was to leave the beaten track and explore alternative topologies. This has led to the adoption of a driver stage using translinear loops for biasing and a transformer-type Wilkinson power combiner previously only used in cable television (CATV) applications. Although the power combiner showed 2dB more loss than expected due to higher than expected substrate losses, both topologies show promise for further integration. Furthermore, an in-depth analysis was performed on the output stage which uses positive feedback to increase its gain. The entire design consists of a four-way power combining class AB power amplifier together with test structures of which the performance was verified by means of probing. Due to the previously mentioned higher than expected loss in the on-chip power combiner, the total output power and power added efficiency (PAE) was 2dB lower than expected from simulations. The result is a saturated output power at 32GHz of 24.1dBm with a PAE of 7.2% and a small signal gain of 25dB. This demonstrates the capability of SiGe BiCMOS to implement PA’s for medium-power mm-wave applications. Moreover, to the best of the author’s knowledge, this PA achieves the second highest saturated output power when comparing SiGe BiCMOS PA’s with center frequency in or close to the Ka-band. The 1dB compression point of this amplifier lies at 22.7dBm which is close to saturated output power and results in a low spectral regrowth when compared to commercial GaAs PA’s (compared with 2MBaud 16QAM input signal at 10dB back-off). Many possible improvements to this design remain. The most important would be the re-design of the on-chip power combiner, possibly with a floating ground shield, to reduce the losses and increase the total output power and PAE. Also the porting of the design to a faster chip technology might result in a considerable increase of the output stage efficiency at the cost of needing to combine more amplifier cells. The transition to a faster chip technology would additionally allow to use this design for alternative mm-wave applications like automotive radar at 79GHz andWiGig at 60GHz

    Passive and active circuits in cmos technology for rf, microwave and millimeter wave applications

    Get PDF
    The permeation of CMOS technology to radio frequencies and beyond has fuelled an urgent need for a diverse array of passive and active circuits that address the challenges of rapidly emerging wireless applications. While traditional analog based design approaches satisfy some applications, the stringent requirements of newly emerging applications cannot necessarily be addressed by existing design ideas and compel designers to pursue alternatives. One such alternative, an amalgamation of microwave and analog design techniques, is pursued in this work. A number of passive and active circuits have been designed using a combination of microwave and analog design techniques. For passives, the most crucial challenge to their CMOS implementation is identified as their large dimensions that are not compatible with CMOS technology. To address this issue, several design techniques – including multi-layered design and slow wave structures – are proposed and demonstrated through experimental results after being suitably tailored for CMOS technology. A number of novel passive structures - including a compact 10 GHz hairpin resonator, a broadband, low loss 25-35 GHz Lange coupler, a 25-35 GHz thin film microstrip (TFMS) ring hybrid, an array of 0.8 nH and 0.4 nH multi-layered high self resonant frequency (SRF) inductors are proposed, designed and experimentally verified. A number of active circuits are also designed and notable experimental results are presented. These include 3-10 GHz and DC-20 GHz distributed low noise amplifiers (LNA), a dual wideband Low noise amplifier and 15 GHz distributed voltage controlled oscillators (DVCO). Distributed amplifiers are identified as particularly effective in the development of wideband receiver front end sub-systems due to their gain flatness, excellent matching and high linearity. The most important challenge to the implementation of distributed amplifiers in CMOS RFICs is identified as the issue of their miniaturization. This problem is solved by using integrated multi-layered inductors instead of transmission lines to achieve over 90% size compression compared to earlier CMOS implementations. Finally, a dual wideband receiver front end sub-system is designed employing the miniaturized distributed amplifier with resonant loads and integrated with a double balanced Gilbert cell mixer to perform dual band operation. The receiver front end measured results show 15 dB conversion gain, and a 1-dB compression point of -4.1 dBm in the centre of band 1 (from 3.1 to 5.0 GHz) and -5.2 dBm in the centre of band 2 (from 5.8 to 8 GHz) with input return loss less than 10 dB throughout the two bands of operation

    Design and Analysis of Low-power Millimeter-Wave SiGe BiCMOS Circuits with Application to Network Measurement Systems

    Get PDF
    Interest in millimeter (mm-) wave frequencies covering the spectrum of 30-300 GHz has been steadily increasing. Advantages such as larger absolute bandwidth and smaller form-factor have made this frequency region attractive for numerous applications, including high-speed wireless communication, sensing, material science, health, automotive radar, and space exploration. Continuous development of silicon-germanium heterojunction bipolar transistor (SiGe HBT) and associated BiCMOS technology has achieved transistors with fT/fmax of 505/720 GHz and integration with 55 nm CMOS. Such accomplishment and predictions of beyond THz performance have made SiGe BiCMOS technology the most competitive candidate for addressing the aforementioned applications. Especially for mobile applications, a critical demand for future mm-wave applications will be low DC power consumption (Pdc), which requires a substantial reduction of supply voltage and current. Conventionally, reducing the supply voltage will lead to HBTs operating close to or in the saturation region, which is typically avoided in mm-wave circuits due to expectated performance degradation and often inaccurate models. However, due to only moderate speed reduction at the forward-biased base-collector voltage (VBC) up to 0.5 V and the accuracy of the compact model HICUM/L2 also in saturation, low-power mm-wave circuits with SiGe HBTs operating in saturation offer intriguing benefits, which have been explored in this thesis based on 130 nm SiGe BiCMOS technologies: • Different low-power mm-wave circuit blocks are discussed in detail, including low-noise amplifiers (LNAs), down-conversion mixers, and various frequency multipliers covering a wide frequency range from V-band (50-75 GHz) to G-band (140-220 GHz). • Aiming at realizing a better trade-off between Pdc and RF performance, a drastic decrease in supply voltage is realized with forward-biased VBC, forcing transistors of the circuits to operate in saturation. • Discussions contain the theoretical analysis of the key figure of merits (FoMs), topology and bias selection, device sizing, and performance enhancement techniques. • A 173-207 GHz low-power amplifier with 23 dB gain and 3.2 mW Pdc, and a 72-108 GHz low-power tunable amplifier with 10-23 dB gain and 4-21 mW Pdc were designed. • A 97 GHz low-power down-conversion mixer was presented with 9.6 dB conversion gain (CG) and 12 mW Pdc. • For multipliers, a 56-66 GHz low-power frequency quadrupler with -3.6 dB peak CG and 12 mW Pdc, and a 172-201 GHz low-power frequency tripler with -4 dB peak CG and 10.5 mW Pdc were realized. By cascading these two circuits, also a 176-193 GHz low-power ×12 multiplier was designed, achieving -11 dBm output power with only 26 mW Pdc. • An integrated 190 GHz low-power receiver was designed as one receiving channel of a G-band frequency extender specifically for a VNA-based measurement system. Another goal of this receiver is to explore the lowest possible Pdc while keeping its highly competitive RF performance for general applications requiring a wide LO tuning range. Apart from the low-power design method of circuit blocks, the careful analysis and distribution of the receiver FoMs are also applied for further reduction of the overall Pdc. Along this line, this receiver achieved a peak CG of 49 dB with a 14 dB tunning range, consuming only 29 mW static Pdc for the core part and 171 mW overall Pdc, including the LO chain. • All designs presented in this thesis were fabricated and characterized on-wafer. Thanks to the accurate compact model HICUM/L2, first-pass access was achieved for all circuits, and simulation results show excellent agreement with measurements. • Compared with recently published work, most of the designs in this thesis show extremely low Pdc with highly competitive key FoMs regarding gain, bandwidth, and noise figure. • The observed excellent measurement-simulation agreement enables the sensitivity analysis of each design for obtaining a deeper insight into the impact of transistor-related physical effects on critical circuit performance parameters. Such studies provide meaningful feedback for process improvement and modeling development.:Table of Contents Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of symbols and acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Technology 7 2.1 Fabrication Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 SiGe HBT performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 B11HFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 SG13G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.4 SG13D7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Commonly Used Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Grounded-sidewall-shielded microstrip line . . . . . . . . . . . . . . . . . . 12 2.2.2 Zero-impedance Transmission Line . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3.1 Active Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3.2 Passive Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Low-power Low-noise Amplifiers 25 3.1 173-207 GHz Ultra-low-power Amplifier . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Topology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Bias Dependency of the Small-signal Performance . . . . . . . . . . . . . 27 3.1.2.1 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.2.2 Bias vs Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.2.3 Bias vs Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.2.4 Bias vs Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.3 Bias selection and Device sizing . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3.1 Bias Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3.2 Device Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.4 Performance Enhancement Technologies . . . . . . . . . . . . . . . . . . . 41 3.1.4.1 Gm-boosting Inductors . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.4.2 Stability Enhancement . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.4.3 Noise Improvement . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.5 Circuit Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.5.1 Layout Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.5.2 Inductors Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.5.3 Dual-band Matching Network . . . . . . . . . . . . . . . . . . . 48 3.1.5.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 72-108 GHz Low-Power Tunable Amplifier . . . . . . . . . . . . . . . . . . . . . . 55 3.2.1 Configuration, Sizing, and Bias Tuning Range . . . . . . . . . . . . . . . . 55 3.2.2 Regional Matching Network . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2.1 Impedance Variation . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2.2 Regional Matching Network Design . . . . . . . . . . . . . . . . 60 3.2.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Low-power Down-conversion Mixers 73 4.1 97 GHz Low-power Down-conversion Mixer . . . . . . . . . . . . . . . . . . . . . 74 4.1.1 Mixer Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1.1 Mixer Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1.2 Bias Selection and Device Sizing . . . . . . . . . . . . . . . . . . 77 4.1.1.3 Mixer Implementation . . . . . . . . . . . . . . . . . . . . . . . . 79 4.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.2.1 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 Low-power Multipliers 87 5.1 General Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 56-66 GHz Low-power Frequency Quadrupler . . . . . . . . . . . . . . . . . . . . 89 5.3 172-201 GHz Low-power Frequency Tripler . . . . . . . . . . . . . . . . . . . . . 93 5.4 176-193 GHz Low-power ×12 Frequency Multiplier . . . . . . . . . . . . . . . . . 96 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6 Low-power Receivers 101 6.1 Receiver Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 LO Chain (×12) Integrated 190 GHz Low-Power Receiver . . . . . . . . . . . . . 104 6.2.1 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.2 Low-power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.3.1 LNA and LO DA . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.3.2 Tunable Mixer and IF BA . . . . . . . . . . . . . . . . . . . . . 111 6.2.3.3 65 GHz (V-band) Quadrupler . . . . . . . . . . . . . . . . . . . 116 6.2.3.4 G-band Tripler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.2.4 Receiver Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.5 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7 Conclusions 133 7.1 Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Bibliography 135 List of Figures 149 List of Tables 157 A Derivation of the Gm 159 A.1 Gm of standard cascode stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 A.2 Gm of cascode stage with Lcas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 A.3 Gm of cascode stage with Lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 B Derivation of Yin in the stability analysis 163 C Derivation of Zin and Zout 165 C.1 Zin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.2 Zout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D Derivation of the cascaded oP1dB 169 E Table of element values for the designed circuits 17

    BiCMOS Millimetre-wave low-noise amplifier

    Get PDF
    Abstract: Please refer to full text to view abstract.D.Phil. (Electrical and Electronic Engineering

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Innovative Design and Realization of Microwave and Millimeter-Wave Integrated circuits

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    CMOS MESFET Cascode Amplifiers for RFIC Applications

    Get PDF
    abstract: There is an ever-increasing demand for higher bandwidth and data rate ensuing from exploding number of radio frequency integrated systems and devices. As stated in the Shannon-Hartley theorem, the maximum achievable data rate of a communication channel is linearly proportional to the system bandwidth. This is the main driving force behind pushing wireless systems towards millimeter-wave frequency range, where larger bandwidth is available at a higher carrier frequency. Observing the Moor’s law, highly scaled complementary metal–oxide–semiconductor (CMOS) technologies provide fast transistors with a high unity power gain frequency which enables operating at millimeter-wave frequency range. CMOS is the compelling choice for digital and signal processing modules which concurrently offers high computation speed, low power consumption, and mass integration at a high manufacturing yield. One of the main shortcomings of the sub-micron CMOS technologies is the low breakdown voltage of the transistors that limits the dynamic range of the radio frequency (RF) power blocks, especially with the power amplifiers. Low voltage swing restricts the achievable output power which translates into low signal to noise ratio and degraded linearity. Extensive research has been done on proposing new design and IC fabrication techniques with the goal of generating higher output power in CMOS technology. The prominent drawbacks of these solutions are an increased die area, higher cost per design, and lower overall efficiency due to lossy passive components. In this dissertation, CMOS compatible metal–semiconductor field-effect transistor (MESFETs) are utilized to put forward a new solution to enhance the power amplifier’s breakdown voltage, gain and maximum output power. Requiring no change to the conventional CMOS process flow, this low cost approach allows direct incorporation of high voltage power MESFETs into silicon. High voltage MESFETs were employed in a cascode structure to push the amplifier’s cutoff frequency and unity power gain frequency to the 5G and K-band frequency range. This dissertation begins with CMOS compatible MESFET modeling and fabrication steps, and culminates in the discussion of amplifier design and optimization methodology, parasitic de-embedding steps, simulation and measurement results, and high resistivity RF substrate characterization.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore