3,816 research outputs found

    Assentication: User Deauthentication and Lunchtime Attack Mitigation with Seated Posture Biometric

    Full text link
    Biometric techniques are often used as an extra security factor in authenticating human users. Numerous biometrics have been proposed and evaluated, each with its own set of benefits and pitfalls. Static biometrics (such as fingerprints) are geared for discrete operation, to identify users, which typically involves some user burden. Meanwhile, behavioral biometrics (such as keystroke dynamics) are well suited for continuous, and sometimes more unobtrusive, operation. One important application domain for biometrics is deauthentication, a means of quickly detecting absence of a previously authenticated user and immediately terminating that user's active secure sessions. Deauthentication is crucial for mitigating so called Lunchtime Attacks, whereby an insider adversary takes over (before any inactivity timeout kicks in) authenticated state of a careless user who walks away from her computer. Motivated primarily by the need for an unobtrusive and continuous biometric to support effective deauthentication, we introduce PoPa, a new hybrid biometric based on a human user's seated posture pattern. PoPa captures a unique combination of physiological and behavioral traits. We describe a low cost fully functioning prototype that involves an office chair instrumented with 16 tiny pressure sensors. We also explore (via user experiments) how PoPa can be used in a typical workplace to provide continuous authentication (and deauthentication) of users. We experimentally assess viability of PoPa in terms of uniqueness by collecting and evaluating posture patterns of a cohort of users. Results show that PoPa exhibits very low false positive, and even lower false negative, rates. In particular, users can be identified with, on average, 91.0% accuracy. Finally, we compare pros and cons of PoPa with those of several prominent biometric based deauthentication techniques

    Biometric identity-based cryptography for e-Government environment

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    Modelling and simulation of a biometric identity-based cryptography

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    Frictionless Authentication Systems: Emerging Trends, Research Challenges and Opportunities

    Get PDF
    Authentication and authorization are critical security layers to protect a wide range of online systems, services and content. However, the increased prevalence of wearable and mobile devices, the expectations of a frictionless experience and the diverse user environments will challenge the way users are authenticated. Consumers demand secure and privacy-aware access from any device, whenever and wherever they are, without any obstacles. This paper reviews emerging trends and challenges with frictionless authentication systems and identifies opportunities for further research related to the enrollment of users, the usability of authentication schemes, as well as security and privacy trade-offs of mobile and wearable continuous authentication systems.Comment: published at the 11th International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2017

    Challenges of Multi-Factor Authentication for Securing Advanced IoT (A-IoT) Applications

    Full text link
    The unprecedented proliferation of smart devices together with novel communication, computing, and control technologies have paved the way for the Advanced Internet of Things~(A-IoT). This development involves new categories of capable devices, such as high-end wearables, smart vehicles, and consumer drones aiming to enable efficient and collaborative utilization within the Smart City paradigm. While massive deployments of these objects may enrich people's lives, unauthorized access to the said equipment is potentially dangerous. Hence, highly-secure human authentication mechanisms have to be designed. At the same time, human beings desire comfortable interaction with their owned devices on a daily basis, thus demanding the authentication procedures to be seamless and user-friendly, mindful of the contemporary urban dynamics. In response to these unique challenges, this work advocates for the adoption of multi-factor authentication for A-IoT, such that multiple heterogeneous methods - both well-established and emerging - are combined intelligently to grant or deny access reliably. We thus discuss the pros and cons of various solutions as well as introduce tools to combine the authentication factors, with an emphasis on challenging Smart City environments. We finally outline the open questions to shape future research efforts in this emerging field.Comment: 7 pages, 4 figures, 2 tables. The work has been accepted for publication in IEEE Network, 2019. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Authentication of Students and Students’ Work in E-Learning : Report for the Development Bid of Academic Year 2010/11

    Get PDF
    Global e-learning market is projected to reach $107.3 billion by 2015 according to a new report by The Global Industry Analyst (Analyst 2010). The popularity and growth of the online programmes within the School of Computer Science obviously is in line with this projection. However, also on the rise are students’ dishonesty and cheating in the open and virtual environment of e-learning courses (Shepherd 2008). Institutions offering e-learning programmes are facing the challenges of deterring and detecting these misbehaviours by introducing security mechanisms to the current e-learning platforms. In particular, authenticating that a registered student indeed takes an online assessment, e.g., an exam or a coursework, is essential for the institutions to give the credit to the correct candidate. Authenticating a student is to ensure that a student is indeed who he says he is. Authenticating a student’s work goes one step further to ensure that an authenticated student indeed does the submitted work himself. This report is to investigate and compare current possible techniques and solutions for authenticating distance learning student and/or their work remotely for the elearning programmes. The report also aims to recommend some solutions that fit with UH StudyNet platform.Submitted Versio
    • …
    corecore