1,384 research outputs found

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Propagation effects for land mobile satellite systems: Overview of experimental and modeling results

    Get PDF
    Models developed and experiments performed to characterize the propagation environment associated with land mobile communication using satellites are discussed. Experiments were carried out with transmitters on stratospheric balloons, remotely piloted aircraft, helicopters, and geostationary satellites. This text is comprised of compiled experimental results for the expressed use of communications engineers, designers of planned Land Mobile Satellite Systems (LMSS), and modelers of propagation effects. The results presented here are mostly derived from systematic studies of propagation effects for LMSS geometries in the United States associated with rural and suburban regions. Where applicable, the authors also draw liberally from the results of other related investigations in Canada, Europe, and Australia. Frequencies near 1500 MHz are emphasized to coincide with frequency bands allocated for LMSS by the International Telecommunication Union, although earlier experimental work at 870 MHz is also included

    A Hybrid Ray and Graph Model for Simulating Vehicle-to-Vehicle Channels in Tunnels

    Get PDF

    A Non-Stationary VVLC MIMO Channel Model for Street Corner Scenarios

    Full text link
    In recent years, the application potential of visible light communication (VLC) technology as an alternative and supplement to radio frequency (RF) technology has attracted people's attention. The study of the underlying VLC channel is the basis for designing the VLC communication system. In this paper, a new non-stationary geometric street corner model is proposed for vehicular VLC (VVLC) multiple-input multiple-output (MIMO) channel. The proposed model takes into account changes in vehicle speed and direction. The category of scatterers includes fixed scatterers and mobile scatterers (MS). Based on the proposed model, we derive the channel impulse response (CIR) and explore the statistical characteristics of the VVLC channel. The channel gain and root mean square (RMS) delay spread of the VVLC channel are studied. In addition, the influence of velocity change on the statistical characteristics of the model is also investigated. The proposed channel model can guide future vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) optical communication system design

    Channel Modeling and Characteristics for 6G Wireless Communications

    Full text link
    [EN] Channel models are vital for theoretical analysis, performance evaluation, and system deployment of the communication systems between the transmitter and receivers. For sixth-generation (6G) wireless networks, channel modeling and characteristics analysis should combine different technologies and disciplines, such as high-mobil-ity, multiple mobilities, the uncertainty of motion trajectory, and the non-stationary nature of time/frequency/space domains. In this article, we begin with an overview of the salient characteristics in the modeling of 6G wireless channels. Then, we discuss the advancement of channel modeling and characteristics analysis for next-generation communication systems. Finally, we outline the research challenges of channel models and characteristics in 6G wireless communications.This research was supported by the National Key R&D Program of China under grant 2018YFB1801101; the National Nature Science Foundation of China (No. 61771248 and 61971167); the Jiangsu Province Research Scheme of Nature Science for Higher Education Institution (No. 14KJA510001); and the Open Research Fund of the National Mobile Communications Research Laboratory, Southeast University (No. 2020D14).Jiang, H.; Mukherjee, M.; Zhou, J.; Lloret, J. (2021). Channel Modeling and Characteristics for 6G Wireless Communications. IEEE Network. 35(1):296-303. https://doi.org/10.1109/MNET.011.200034829630335

    Time- and Frequency-Varying KK-Factor of Non-Stationary Vehicular Channels for Safety Relevant Scenarios

    Full text link
    Vehicular communication channels are characterized by a non-stationary time- and frequency-selective fading process due to fast changes in the environment. We characterize the distribution of the envelope of the first delay bin in vehicle-to-vehicle channels by means of its Rician KK-factor. We analyze the time-frequency variability of this channel parameter using vehicular channel measurements at 5.6 GHz with a bandwidth of 240 MHz for safety-relevant scenarios in intelligent transportation systems (ITS). This data enables a frequency-variability analysis from an IEEE 802.11p system point of view, which uses 10 MHz channels. We show that the small-scale fading of the envelope of the first delay bin is Ricean distributed with a varying KK-factor. The later delay bins are Rayleigh distributed. We demonstrate that the KK-factor cannot be assumed to be constant in time and frequency. The causes of these variations are the frequency-varying antenna radiation patterns as well as the time-varying number of active scatterers, and the effects of vegetation. We also present a simple but accurate bi-modal Gaussian mixture model, that allows to capture the KK-factor variability in time for safety-relevant ITS scenarios.Comment: 26 pages, 12 figures, submitted to IEEE Transactions on Intelligent Transportation Systems for possible publicatio

    Measurement Based Channel Characterization and Modeling for Vehicle-to-Vehicle Communications

    Get PDF
    Vehicle-to-Vehicle (V2V) communication is a challenging but fast growing technology that has potential to enhance traffic safety and efficiency. It can also provide environmental benefits in terms of reduced fuel consumption. The effectiveness and reliability of these applications highly depends on the quality of the V2V communication link, which rely upon the properties of the propagation channel. Therefore, understanding the properties of the propagation channel becomes extremely important. This thesis aims to fill some gaps of knowledge in V2V channel research by addressing four different topics. The first topic is channel characterization of some important safety critical scenarios (papers I and II). Second, is the accuracy or validation study of existing channel models for these safety critical scenarios (papers III and IV). Third, is about channel modeling (paper V) and, the fourth topic is the impact of antenna placement on vehicles and the possible diversity gains. This thesis consists of an introduction and six papers: Paper I presents a double directional analysis of vehicular channels based on channel measurement data. Using SAGE, a high-resolution algorithm for parameter estimation, we estimate channel parameters to identify underlying propagation mechanisms. It is found that, single-bounce reflections from static objects are dominating propagation mechanisms in the absence of line-of-sight (LOS). Directional spread is observed to be high, which encourages the use of diversity-based methods. Paper II presents results for V2V channel characterization based on channel measurements conducted for merging lanes on highway, and four-way street intersection scenarios. It is found that the merging lane scenario has the worst propagation condition due to lack of scatterers. Signal reception is possible only with the present LOS component given that the antenna has a good gain in the direction of LOS. Thus designing an antenna that has an omni-directional gain, or using multiple antennas that radiate towards different directions become more important for such safety critical scenarios. Paper III presents the results of an accuracy study of a deterministic ray tracing channel model for vehicle-to-vehicle (V2V) communication, that is compared against channel measurement data. It is found that the results from measurement and simulation show a good agreement especially in LOS situations where as in NLOS situations the simulations are accurate as far as existing physical phenomena of wave propagation are captured by the implemented algorithm. Paper IV presents the results of a validation study of a stochastic NLOS pathloss and fading model named VirtualSource11p for V2V communication in urban street intersections. The reference model is validated with the help of independent channel measurement data. It is found that the model is flexible and fits well to most of the measurements with a few exceptions, and we propose minor modifications to the model for increased accuracy. Paper V presents a shadow fading model targeting system simulations based on channel measurements. The model parameters are extracted from measurement data, which is separated into three categories; line-of-sight (LOS), LOS obstructed by vehicles (OLOS), and LOS blocked by buildings (NLOS), with the help of video information recorded during the measurements. It is found that vehicles obstructing the LOS induce an additional attenuation in the received signal power. The results from system level vehicular ad hoc network (VANET) simulations are also presented, showing that the LOS obstruction affects the packet reception probability and this can not be ignored. Paper VI investigates the impact of antenna placement based on channel measurements performed with four omni-directional antennas mounted on the roof, bumper, windscreen and left-side mirror of the transmitter and receiver cars. We use diversity combining methods to evaluate the performance differences for all possible single-input single-output (SIMO), multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) link combinations. This investigation suggests that a pair of antennas with complementary properties, e.g., a roof mounted antenna together with a bumper antenna is a good solution for obtaining the best reception performance, in most of the propagation environments. In summary, this thesis describes the channel behavior for safety-critical scenarios by statistical means and models it so that the system performance can be assessed in a realistic manner. In addition to that the influence of different antenna arrangements has also been studied to exploit the spatial diversity and to mitigate the shadowing effects. The presented work can thus enable more efficient design of future V2V communication systems
    • 

    corecore