125 research outputs found

    OxyCAP UK: Oxyfuel Combustion - academic Programme for the UK

    Get PDF
    The OxyCAP-UK (Oxyfuel Combustion - Academic Programme for the UK) programme was a ÂŁ2 M collaboration involving researchers from seven UK universities, supported by E.On and the Engineering and Physical Sciences Research Council. The programme, which ran from November 2009 to July 2014, has successfully completed a broad range of activities related to development of oxyfuel power plants. This paper provides an overview of key findings arising from the programme. It covers development of UK research pilot test facilities for oxyfuel applications; 2-D and 3-D flame imaging systems for monitoring, analysis and diagnostics; fuel characterisation of biomass and coal for oxyfuel combustion applications; ash transformation/deposition in oxyfuel combustion systems; materials and corrosion in oxyfuel combustion systems; and development of advanced simulation based on CFD modelling

    Three-dimensional visualisation and quantitative characterisation of fossil fuel flames using tomography and digital imaging techniques

    Get PDF
    This thesis describes the design, implementation and experimental evaluation of a prototype instrumentation system for the three-dimensional (3-D) visualisation and quantitative characterisation of fossil fuel flames. A review of methodologies and technologies for the 3-D visualisation and characterisation of combustion flames is given, together with a discussion of main difficulties and technical requirements in their applications. A strategy incorporating optical sensing, digital image processing and tomographic reconstruction techniques is proposed. The strategy was directed towards the reconstruction of 3-D models of a flame and the subsequent quantification of its 3-D geometric, luminous and fluid dynamic parameters. Based on this strategy, a flame imaging system employing three identical synchronised RG B cameras has been developed. The three cameras, placed equidistantly and equiangular on a semicircle around the flame, captured six simultaneous images of the flame from six different directions. Dedicated computing algorithms, based on image processing and tomographic reconstruction techniques have been developed to reconstruct the 3-D models of a flame. A set of geometric, luminous and fluid dynamic parameters, including surface area, volume, length, circularity, luminosity and temperature are determined from the 3-D models generated. Systematic design and experimental evaluation of the system on a gas-fired combustion rig are reported. The accuracy, resolution and validation of the system were also evaluated using purpose-designed templates including a high precision laboratory ruler, a colour flat panel and a tungsten lamp. The results obtained from the experimental evaluation are presented and the relationship between the measured parameters and the corresponding operational conditions are quantified. Preliminary investigations were conducted on a coal-fired industry-scale combustion test facility. The multi-camera system was reconfigured to use only one camera due to the restrictions at the site facility. Therefore the property of rotational symmetry of the flame had to be assumed. Under such limited conditions, the imaging system proved to provide a good reconstruction of the internal structures and luminosity variations inside the This thesis describes the design, implementation and experimental evaluation of a prototype instrumentation system for the three-dimensional (3-D) visualisation and quantitative characterisation of fossil fuel flames. A review of methodologies and technologies for the 3-D visualisation and characterisation of combustion flames is given, together with a discussion of main difficulties and technical requirements in their applications. A strategy incorporating optical sensing, digital image processing and tomographic reconstruction techniques is proposed. The strategy was directed towards the reconstruction of 3-D models of a flame and the subsequent quantification of its 3-D geometric, luminous and fluid dynamic parameters. Based on this strategy, a flame imaging system employing three identical synchronised RG B cameras has been developed. The three cameras, placed equidistantly and equiangular on a semicircle around the flame, captured six simultaneous images of the flame from six different directions. Dedicated computing algorithms, based on image processing and tomographic reconstruction techniques have been developed to reconstruct the 3-D models of a flame. A set of geometric, luminous and fluid dynamic parameters, including surface area, volume, length, circularity, luminosity and temperature are determined from the 3-D models generated. Systematic design and experimental evaluation of the system on a gas-fired combustion rig are reported. The accuracy, resolution and validation of the system were also evaluated using purpose-designed templates including a high precision laboratory ruler, a colour flat panel and a tungsten lamp. The results obtained from the experimental evaluation are presented and the relationship between the measured parameters and the corresponding operational conditions are quantified. Preliminary investigations were conducted on a coal-fired industry-scale combustion test facility. The multi-camera system was reconfigured to use only one camera due to the restrictions at the site facility. Therefore the property of rotational symmetry of the flame had to be assumed. Under such limited conditions, the imaging system proved to provide a good reconstruction of the internal structures and luminosity variations inside the This thesis describes the design, implementation and experimental evaluation of a prototype instrumentation system for the three-dimensional (3-D) visualisation and quantitative characterisation of fossil fuel flames. A review of methodologies and technologies for the 3-D visualisation and characterisation of combustion flames is given, together with a discussion of main difficulties and technical requirements in their applications. A strategy incorporating optical sensing, digital image processing and tomographic reconstruction techniques is proposed. The strategy was directed towards the reconstruction of 3-D models of a flame and the subsequent quantification of its 3-D geometric, luminous and fluid dynamic parameters. Based on this strategy, a flame imaging system employing three identical synchronised RG B cameras has been developed. The three cameras, placed equidistantly and equiangular on a semicircle around the flame, captured six simultaneous images of the flame from six different directions. Dedicated computing algorithms, based on image processing and tomographic reconstruction techniques have been developed to reconstruct the 3-D models of a flame. A set of geometric, luminous and fluid dynamic parameters, including surface area, volume, length, circularity, luminosity and temperature are determined from the 3-D models generated. Systematic design and experimental evaluation of the system on a gas-fired combustion rig are reported. The accuracy, resolution and validation of the system were also evaluated using purpose-designed templates including a high precision laboratory ruler, a colour flat panel and a tungsten lamp. The results obtained from the experimental evaluation are presented and the relationship between the measured parameters and the corresponding operational conditions are quantified. Preliminary investigations were conducted on a coal-fired industry-scale combustion test facility. The multi-camera system was reconfigured to use only one camera due to the restrictions at the site facility. Therefore the property of rotational symmetry of the flame had to be assumed. Under such limited conditions, the imaging system proved to provide a good reconstruction of the internal structures and luminosity variations inside the flame. Suggestions for future development of the technology are also reported

    Optical Fiber Imaging Based Tomographic Reconstruction of Burner Flames

    Get PDF
    This paper presents the design, implementation, and evaluation of an optical fiber imaging based tomographic system for the 3-D visualization and characterization of a burner flame. Eight imaging fiber bundles coupled with two RGB chargecoupled device cameras are used to acquire flame images simultaneously from eight different directions around the burner. The fiber bundle has 30k picture elements and an objective lens with a 92? angle of view. The characteristic evaluation of the imaging fiber bundles and the calibration of the system were conducted to ensure the accuracy of the system. A new tomographic algorithm that combines the logical filtered back-projection and the simultaneous algebraic reconstruction technique is proposed to reconstruct the flame sections from the images. A direct comparison between the proposed algorithm and other tomographic approaches is conducted through computer simulation for different test templates and numbers of projections. The 3-D reconstruction of the cross- and longitudinal-sections of a burner flame from image projections obtained from the imaging system was also performed. The effectiveness of the imaging system and computer algorithm is assessed through experimental tests

    Soot temperature characterization of spray a flames by combined extinction and radiation methodology

    Full text link
    [EN] Even though different optical techniques have been applied on 'Spray A' in-flame soot quantification within Engine Combustion Network in recent years, little information can be found for soot temperature measurement. In this study, a combined extinction and radiation methodology has been developed with different wavelengths and applied on quasi-steady Diesel flame to obtain the soot amount and temperature distribution simultaneously by considering self-absorption issues. All the measurements were conducted in a constant pressure combustion chamber. The fuel as well as the operating conditions and the injector used were chosen following the guidelines of the Engine Combustion Network. Uncertainty caused by wavelength selection was evaluated. Additionally, temperature-equivalence ratio maps were constructed by combining the measurements with a 1D spray model. Temperature fields during the quasi-steady combustion phase show peak temperatures around the limit of the radiation field, in agreement with a typical diffusion flame structure. Effects of different operating parameters on soot formation and temperature were investigated. Soot temperature increases dramatically with oxygen concentration, but it shows much less sensitivity with ambient temperature and injection pressure, which on the other hand have significant effects on soot production. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.This study was partially funded by the Ministerio de Economia y Competitividad from Spain in the frame of the CHEST Project (TRA2017-89139-C2-1-R) and China Postdoctoral Science Foundation (2018M642176). This study was also partially supported by State Key Laboratory of Engines, Tianjin University.Xuan, T.; Desantes J.M.; Pastor, JV.; GarcĂ­a-Oliver, JM. (2019). Soot temperature characterization of spray a flames by combined extinction and radiation methodology. Combustion and Flame. 204:290-303. https://doi.org/10.1016/j.combustflame.2019.03.02329030320

    Experimental Study of Liquid Fuel Spray Combustion

    Get PDF

    OxyCAP UK: Oxyfuel Combustion - academic Programme for the UK

    Get PDF
    The OxyCAP-UK (Oxyfuel Combustion - Academic Programme for the UK) programme was a ÂŁ2M collaboration involving researchers from seven UK universities, supported by E.On and the Engineering and Physical Sciences Research Council. The programme, which ran from November 2009 to July 2014, has successfully completed a broad range of activities related to development of oxyfuel power plants. This paper provides an overview of key findings arising from the programme. It covers development of UK research pilot test facilities for oxyfuel applications; 2-D and 3-D flame imaging systems for monitoring, analysis and diagnostics; fuel characterisation of biomass and coal for oxyfuel combustion applications; ash transformation/deposition in oxyfuel combustion systems; materials and corrosion in oxyfuel combustion systems; and development of advanced simulation based on CFD modelling

    Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    Get PDF
    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters

    Measurement of the spatially distributed temperature and soot loadings in a laminar diffusion flame using a Cone-Beam Tomography technique

    Get PDF
    A new low-cost optical diagnostic technique, called Cone Beam Tomographic Three Colour Spectrometry (CBT-TCS), has been developed to measure the planar distributions of temperature, soot particle size, and soot volume fraction in a co-flow axi-symmetric laminar diffusion flame. The image of a flame is recorded by a colour camera, and then by using colour interpolation and applying a cone beam tomography algorithm, a colour map can be reconstructed that corresponds to a diametral plane. Look-up tables calculated using Planck's law and different scattering models are then employed to deduce the temperature, approximate average soot particle size and soot volume fraction in each voxel (volumetric pixel). A sensitivity analysis of the look-up tables shows that the results have a high temperature resolution but a relatively low soot particle size resolution. The assumptions underlying the technique are discussed in detail. Sample data from an ethylene laminar diffusion flame are compared with data in the literature for similar flames. The comparison shows very consistent temperature and soot volume fraction profiles. Further analysis indicates that the difference seen in comparison with published results are within the measurement uncertainties. This methodology is ready to be applied to measure 3D data by capturing multiple flame images from different angles for non-axisymmetric flame. © 2013 Elsevier Ltd

    Measurements on NASA Langley Durable Combustor Rig by TDLAT: Preliminary Results

    Get PDF
    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. Several separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters

    3-D reconstruction of an axisymmetric flame based on cone-beam tomographic algorithms

    Get PDF
    This paper presents a method of 3-D (three-dimensional) reconstruction of an axisymmetric flame based on cone-beam tomographic algorithms. A FDK-based analytic tomographic algorithm is developed. Computer simulations are undertaken to evaluate the structural similarity between the template and the reconstructed volume so as to evaluate the effectiveness of the algorithm developed. Experimental tests are also conducted using a CCD camera to capture images of a candle flame. The 3-D reconstruction of the flame is then performed. The simulation and experimental results demonstrate the feasibility of the proposed cone-beam based tomographic algorithm for 3-D flame image reconstructio
    • …
    corecore