297,813 research outputs found

    Protein signatures using electrostatic molecular surfaces in harmonic space

    Full text link
    We developed a novel method based on the Fourier analysis of protein molecular surfaces to speed up the analysis of the vast structural data generated in the post-genomic era. This method computes the power spectrum of surfaces of the molecular electrostatic potential, whose three-dimensional coordinates have been either experimentally or theoretically determined. Thus we achieve a reduction of the initial three-dimensional information on the molecular surface to the one-dimensional information on pairs of points at a fixed scale apart. Consequently, the similarity search in our method is computationally less demanding and significantly faster than shape comparison methods. As proof of principle, we applied our method to a training set of viral proteins that are involved in major diseases such as Hepatitis C, Dengue fever, Yellow fever, Bovine viral diarrhea and West Nile fever. The training set contains proteins of four different protein families, as well as a mammalian representative enzyme. We found that the power spectrum successfully assigns a unique signature to each protein included in our training set, thus providing a direct probe of functional similarity among proteins. The results agree with established biological data from conventional structural biochemistry analyses.Comment: 9 pages, 10 figures Published in PeerJ (2013), https://peerj.com/articles/185

    Algorithm Engineering for High-Dimensional Similarity Search Problems (Invited Talk)

    Get PDF
    Similarity search problems in high-dimensional data arise in many areas of computer science such as data bases, image analysis, machine learning, and natural language processing. One of the most prominent problems is finding the k nearest neighbors of a data point q ? ?^d in a large set of data points S ? ?^d, under same distance measure such as Euclidean distance. In contrast to lower dimensional settings, we do not know of worst-case efficient data structures for such search problems in high-dimensional data, i.e., data structures that are faster than a linear scan through the data set. However, there is a rich body of (often heuristic) approaches that solve nearest neighbor search problems much faster than such a scan on many real-world data sets. As a necessity, the term solve means that these approaches give approximate results that are close to the true k-nearest neighbors. In this talk, we survey recent approaches to nearest neighbor search and related problems. The talk consists of three parts: (1) What makes nearest neighbor search difficult? (2) How do current state-of-the-art algorithms work? (3) What are recent advances regarding similarity search on GPUs, in distributed settings, or in external memory

    Similarity Search for Spatial Trajectories Using Online Lower Bounding DTW and Presorting Strategies

    Get PDF
    Similarity search with respect to time series has received much attention from research and industry in the last decade. Dynamic time warping is one of the most widely used distance measures in this context. This is due to the simplicity of its definition and the surprising quality of dynamic time warping for time series classification. However, dynamic time warping is not well-behaving with respect to many dimensionality reduction techniques as it does not fulfill the triangle inequality. Additionally, most research on dynamic time warping has been performed with one-dimensional time series or in multivariate cases of varying dimensions. With this paper, we propose three extensions to LB_Rotation for two-dimensional time series (trajectories). We simplify LB_Rotation and adapt it to the online and data streaming case and show how to tune the pruning ratio in similarity search by using presorting strategies based on simple summaries of trajectories. Finally, we provide a thorough valuation of these aspects on a large variety of datasets of spatial trajectories

    Solving Maximum Clique Problem for Protein Structure Similarity

    Get PDF
    A basic assumption of molecular biology is that proteins sharing close three-dimensional (3D) structures are likely to share a common function and in most cases derive from a same ancestor. Computing the similarity between two protein structures is therefore a crucial task and has been extensively investigated. Evaluating the similarity of two proteins can be done by finding an optimal one-to-one matching between their components, which is equivalent to identifying a maximum weighted clique in a specific "alignment graph". In this paper we present a new integer programming formulation for solving such clique problems. The model has been implemented using the ILOG CPLEX Callable Library. In addition, we designed a dedicated branch and bound algorithm for solving the maximum cardinality clique problem. Both approaches have been integrated in VAST (Vector Alignment Search Tool) - a software for aligning protein 3D structures largely used in NCBI (National Center for Biotechnology Information). The original VAST clique solver uses the well known Bron and Kerbosh algorithm (BK). Our computational results on real life protein alignment instances show that our branch and bound algorithm is up to 116 times faster than BK for the largest proteins

    Pairwise gene GO-based measures for biclustering of high-dimensional expression data

    Get PDF
    Background: Biclustering algorithms search for groups of genes that share the same behavior under a subset of samples in gene expression data. Nowadays, the biological knowledge available in public repositories can be used to drive these algorithms to find biclusters composed of groups of genes functionally coherent. On the other hand, a distance among genes can be defined according to their information stored in Gene Ontology (GO). Gene pairwise GO semantic similarity measures report a value for each pair of genes which establishes their functional similarity. A scatter search-based algorithm that optimizes a merit function that integrates GO information is studied in this paper. This merit function uses a term that addresses the information through a GO measure. Results: The effect of two possible different gene pairwise GO measures on the performance of the algorithm is analyzed. Firstly, three well known yeast datasets with approximately one thousand of genes are studied. Secondly, a group of human datasets related to clinical data of cancer is also explored by the algorithm. Most of these data are high-dimensional datasets composed of a huge number of genes. The resultant biclusters reveal groups of genes linked by a same functionality when the search procedure is driven by one of the proposed GO measures. Furthermore, a qualitative biological study of a group of biclusters show their relevance from a cancer disease perspective. Conclusions: It can be concluded that the integration of biological information improves the performance of the biclustering process. The two different GO measures studied show an improvement in the results obtained for the yeast dataset. However, if datasets are composed of a huge number of genes, only one of them really improves the algorithm performance. This second case constitutes a clear option to explore interesting datasets from a clinical point of view.Ministerio de Economía y Competitividad TIN2014-55894-C2-

    Improving k-nn search and subspace clustering based on local intrinsic dimensionality

    Get PDF
    In several novel applications such as multimedia and recommender systems, data is often represented as object feature vectors in high-dimensional spaces. The high-dimensional data is always a challenge for state-of-the-art algorithms, because of the so-called curse of dimensionality . As the dimensionality increases, the discriminative ability of similarity measures diminishes to the point where many data analysis algorithms, such as similarity search and clustering, that depend on them lose their effectiveness. One way to handle this challenge is by selecting the most important features, which is essential for providing compact object representations as well as improving the overall search and clustering performance. Having compact feature vectors can further reduce the storage space and the computational complexity of search and learning tasks. Support-Weighted Intrinsic Dimensionality (support-weighted ID) is a new promising feature selection criterion that estimates the contribution of each feature to the overall intrinsic dimensionality. Support-weighted ID identifies relevant features locally for each object, and penalizes those features that have locally lower discriminative power as well as higher density. In fact, support-weighted ID measures the ability of each feature to locally discriminate between objects in the dataset. Based on support-weighted ID, this dissertation introduces three main research contributions: First, this dissertation proposes NNWID-Descent, a similarity graph construction method that utilizes the support-weighted ID criterion to identify and retain relevant features locally for each object and enhance the overall graph quality. Second, with the aim to improve the accuracy and performance of cluster analysis, this dissertation introduces k-LIDoids, a subspace clustering algorithm that extends the utility of support-weighted ID within a clustering framework in order to gradually select the subset of informative and important features per cluster. k-LIDoids is able to construct clusters together with finding a low dimensional subspace for each cluster. Finally, using the compact object and cluster representations from NNWID-Descent and k-LIDoids, this dissertation defines LID-Fingerprint, a new binary fingerprinting and multi-level indexing framework for the high-dimensional data. LID-Fingerprint can be used for hiding the information as a way of preventing passive adversaries as well as providing an efficient and secure similarity search and retrieval for the data stored on the cloud. When compared to other state-of-the-art algorithms, the good practical performance provides an evidence for the effectiveness of the proposed algorithms for the data in high-dimensional spaces

    2D and 3D similarity landscape analysis identifies PARP as a novel off-target for the drug Vatalanib

    Get PDF
    Background Searching for two-dimensional (2D) structural similarities is a useful tool to identify new active compounds in drug-discovery programs. However, as 2D similarity measures neglect important structural and functional features, similarity by 2D might be underestimated. In the present study, we used combined 2D and three-dimensional (3D) similarity comparisons to reveal possible new functions and/or side-effects of known bioactive compounds. Results We utilised more than 10,000 compounds from the SuperTarget database with known inhibition values for twelve different anti-cancer targets. We performed all-against-all comparisons resulting in 2D similarity landscapes. Among the regions with low 2D similarity scores are inhibitors of vascular endothelial growth factor receptor (VEGFR) and inhibitors of poly ADP-ribose polymerase (PARP). To demonstrate that 3D landscape comparison can identify similarities, which are untraceable in 2D similarity comparisons, we analysed this region in more detail. This 3D analysis showed the unexpected structural similarity between inhibitors of VEGFR and inhibitors of PARP. Among the VEGFR inhibitors that show similarities to PARP inhibitors was Vatalanib, an oral “multi-targeted” small molecule protein kinase inhibitor being studied in phase-III clinical trials in cancer therapy. An in silico docking simulation and an in vitro HT universal colorimetric PARP assay confirmed that the VEGFR inhibitor Vatalanib exhibits off-target activity as a PARP inhibitor, broadening its mode of action. Conclusion In contrast to the 2D-similarity search, the 3D-similarity landscape comparison identifies new functions and side effects of the known VEGFR inhibitor Vatalanib
    corecore