926 research outputs found

    Novel regulators of stem cell fates identified by a multivariate phenotype screen of small compounds on human embryonic stem cell colonies

    Get PDF
    Understanding the complex mechanisms that govern the fate decisions of human embryonic stem cells (hESCs) is fundamental to their use in cell replacement therapies. The progress of dissecting these mechanisms will be facilitated by the availability of robust high-throughput screening assays on hESCs. In this study, we report an image-based high-content assay for detecting compounds that affect hESC survival or pluripotency. Our assay was designed to detect changes in the phenotype of hESC colonies by quantifying multiple parameters, including the number of cells in a colony, colony area and shape, intensity of nuclear staining, and the percentage of cells in the colony that express a marker of pluripotency (TRA-1-60), as well as the number of colonies per well. We used this assay to screen 1040 compounds from two commercial compound libraries, and identified 17 that promoted differentiation, as well as 5 that promoted survival of hESCs. Among the novel small compounds we identified with activity on hESC are several steroids that promote hESC differentiation and the antihypertensive drug, pinacidil, which affects hESC survival. The analysis of overlapping targets of pinacidil and the other survival compounds revealed that activity of PRK2, ROCK, MNK1, RSK1, and MSK1 kinases may contribute to the survival of hESCs. (C) 2010 Elsevier B.V. All rights reserved

    Quantitative approaches to study retinal neurogenesis

    Full text link
    The study of the development of the vertebrate retina can be addressed from several perspectives: from a purely qualitative to a more quantitative approach that takes into account its spatio-temporal features, its three-dimensional structure and also the regulation and properties at the systems level. Here, we review the ongoing transition toward a full four-dimensional characterization of the developing vertebrate retina, focusing on the challenges at the experimental, image acquisition, image processing and quantification. Using the developing zebrafish retina, we illustrate how quantitative data extracted from these type of highly dense, three-dimensional tissues depend strongly on the image quality, image processing and algorithms used to segment and quantify. Therefore, we propose that the scientific community that focuses on developmental systems could strongly benefit from a more detailed disclosure of the tools and pipelines used to process and analyze images from biological sample

    3D imaging and quantitative analysis of intact tissues and organs

    Get PDF
    Embryonic development and tumor growth are highly complex and dynamic processes that exist in both time and space. To fully understand the molecular mechanisms that control these processes, it is crucial to study RNA expression and protein translation with single-cell spatiotemporal resolution. This is feasible by microscopic imaging that enables multidimensional assessments of cells, tissues, and organs. Here, a time-lapse calcium imaging and three-dimensional imaging was used to study physiological development of the brain or pathological development of cancer, respectively. In Paper I, spatiotemporal calcium imaging revealed a new mechanism of neurogenesis during brain development. In Paper II, a new clearing method of clinically stored specimens, DIPCO (diagnosing immunolabeled paraffin-embedded cleared organs), was developed that allows better characterization and staging of intact human tumors. In Paper III, the DIPCO method was applied to determine tumor stage and characterize the microlymphatic system in bladder cancer. In Paper IV, a novel method for RNA labeling of volumetric specimens, DIIFCO (diagnosing in situ and immunofluorescence-labeled cleared onco-sample) was developed to study RNAs expression and localization in intact tumors. Overall, the aim of the thesis was to demonstrate that multidimensional imaging extends the understanding of both physiological and pathological biological developmental processes

    Time-Lapse Microscopy

    Get PDF
    Time-lapse microscopy is a powerful, versatile and constantly developing tool for real-time imaging of living cells. This review outlines the advances of time-lapse microscopy and refers to the most interesting reports, thus pointing at the fact that the modern biology and medicine are entering the thrilling and promising age of molecular cinematography

    On-Chip Living-Cell Microarrays for Network Biology

    Get PDF

    Nessys:A new set of tools for the automated detection of nuclei within intact tissues and dense 3D cultures

    Get PDF
    Methods for measuring the properties of individual cells within their native 3D environment will enable a deeper understanding of embryonic development, tissue regeneration, and tumorigenesis. However, current methods for segmenting nuclei in 3D tissues are not designed for situations in which nuclei are densely packed, nonspherical, or heterogeneous in shape, size, or texture, all of which are true of many embryonic and adult tissue types as well as in many cases for cells differentiating in culture. Here, we overcome this bottleneck by devising a novel method based on labelling the nuclear envelope (NE) and automatically distinguishing individual nuclei using a tree-structured ridge-tracing method followed by shape ranking according to a trained classifier. The method is fast and makes it possible to process images that are larger than the computer's memory. We consistently obtain accurate segmentation rates of >90%, even for challenging images such as mid-gestation embryos or 3D cultures. We provide a 3D editor and inspector for the manual curation of the segmentation results as well as a program to assess the accuracy of the segmentation. We have also generated a live reporter of the NE that can be used to track live cells in 3 dimensions over time. We use this to monitor the history of cell interactions and occurrences of neighbour exchange within cultures of pluripotent cells during differentiation. We provide these tools in an open-access user-friendly format

    BMP signaling is required for cell cleavage in preimplantation-mouse embryos.

    Get PDF
    The mechanisms regulating cell division during development of the mouse pre-implantation embryo are poorly understood. We have investigated whether bone morphogenetic protein (BMP) signaling is involved in controlling cell cycle during mouse pre-implantation development. We mapped and quantitated the dynamic activities of BMP signaling through high-resolution immunofluorescence imaging combined with a 3D segmentation method. Immunostaining for phosphorylated Smad1/5/8 shows that BMP signaling is activated in mouse embryos as early as the 4-cell stage, and becomes spatially restricted by late blastocyst stage. Perturbation of BMP signaling in preimplantation mouse embryos, whether by treatment with a small molecule inhibitor, with Noggin protein, or by overexpression of a dominant-negative BMP receptor, indicates that BMPs regulate cell cleavage up to the morula stage. These results indicate that BMP signaling is active during mouse pre-implantation development and is required for cell cleavage in preimplantation mouse embryos
    corecore