265 research outputs found

    Enhanced Digital Breast Tomosynthesis diagnosis using 3D visualization and automatic classification of lesions

    Get PDF
    Breast cancer represents the main cause of cancer-related deaths in women. Nonetheless, the mortality rate of this disease has been decreasing over the last three decades, largely due to the screening programs for early detection. For many years, both screening and clinical diagnosis were mostly done through Digital Mammography (DM). Approved in 2011, Digital Breast Tomosynthesis (DBT) is similar to DM but it allows a 3D reconstruction of the breast tissue, which helps the diagnosis by reducing the tissue overlap. Currently, DBT is firmly established and is approved as a stand-alone modality to replace DM. The main objective of this thesis is to develop computational tools to improve the visualization and interpretation of DBT data. Several methods for an enhanced visualization of DBT data through volume rendering were studied and developed. Firstly, important rendering parameters were considered. A new approach for automatic generation of transfer functions was implemented and two other parameters that highly affect the quality of volume rendered images were explored: voxel size in Z direction and sampling distance. Next, new image processing methods that improve the rendering quality by considering the noise regularization and the reduction of out-of-plane artifacts were developed. The interpretation of DBT data with automatic detection of lesions was approached through artificial intelligence methods. Several deep learning Convolutional Neural Networks (CNNs) were implemented and trained to classify a complete DBT image for the presence or absence of microcalcification clusters (MCs). Then, a faster R-CNN (region-based CNN) was trained to detect and accurately locate the MCs in the DBT images. The detected MCs were rendered with the developed 3D rendering software, which provided an enhanced visualization of the volume of interest. The combination of volume visualization with lesion detection may, in the future, improve both diagnostic accuracy and also reduce analysis time. This thesis promotes the development of new computational imaging methods to increase the diagnostic value of DBT, with the aim of assisting radiologists in their task of analyzing DBT volumes and diagnosing breast cancer

    Comparison of different image reconstruction algorithms for Digital Breast Tomosynthesis and assessment of their potential to reduce radiation dose

    Get PDF
    Tese de mestrado, Engenharia Física, 2022, Universidade de Lisboa, Faculdade de CiênciasDigital Breast Tomosynthesis is a three-dimensional medical imaging technique that allows the view of sectional parts of the breast. Obtaining multiple slices of the breast constitutes an advantage in contrast to conventional mammography examination in view of the increased potential in breast cancer detectability. Conventional mammography, despite being a screening success, has undesirable specificity, sensitivity, and high recall rates owing to the overlapping of tissues. Although this new technique promises better diagnostic results, the acquisition methods and image reconstruction algorithms are still under research. Several articles suggest the use of analytic algorithms. However, more recent articles highlight the iterative algorithm’s potential for increasing image quality when compared to the former. The scope of this dissertation was to test the hypothesis of achieving higher quality images using iterative algorithms acquired with lower doses than those using analytic algorithms. In a first stage, the open-source Tomographic Iterative GPU-based Reconstruction (TIGRE) Toolbox for fast and accurate 3D x-ray image reconstruction was used to reconstruct the images acquired using an acrylic phantom. The algorithms used from the toolbox were the Feldkamp, Davis, and Kress, the Simultaneous Algebraic Reconstruction Technique, and the Maximum Likelihood Expectation Maximization algorithm. In a second and final state, the possibility of further reducing the radiation dose using image postprocessing tools was evaluated. A Total Variation Minimization filter was applied to the images reconstructed with the TIGRE toolbox algorithm that provided the best image quality. These were then compared to the images of the commercial unit used for the image acquisitions. With the use of image quality parameters, it was found that the Maximum Likelihood Expectation Maximization algorithm performance was the best of the three for lower radiation doses, especially with the filter. In sum, the result showed the potential of the algorithm in obtaining images with quality for low doses

    A Stationary Digital Breast Tomosynthesis System: Design Simulation, Characterization and Image Reconstruction

    Get PDF
    Conventional screen-film and/or digital mammography, despite being the most popular breast imaging modalities, suffer from certain limitations, most important of which is tissue overlap and false diagnoses arising thereof. A new three-dimensional alternative for breast cancer screening and diagnosis is tomosynthesis in which a limited number of low-dose two-dimensional projection images of a patient are used to reconstruct the three-dimensional tissue information. The tomosynthesis systems currently under development all incorporate an x-ray source that moves over a certain angle to acquire images. This tube motion is a major limitation because it degrades image quality, increases the scan time and causes prolonged patient discomfort. The availability of independently controllable carbon nanotube cathodes enabled us to explore the possibility of setting up a stationary multi-beam imaging system. In this dissertation we have proposed a stationary digital breast tomosynthesis scanner using spatially distributed carbon nanotube based field emission x-ray sources. We have presented details about the design, set-up, characterization and image reconstruction of the completely stationary digital breast tomosynthesis system. This system has the potential to reduce the total scan time and improve the image quality in breast imaging. Extensive design simulation results have been used to decide on the final system set-up. The fully assembled actual experimental system is capable of acquiring all the images in as little as eight seconds and yield superior image quality as well. The system has been completely characterized in terms of focal spot size, system resolution and geometric calibration. Certain important results have been obtained during the process that we hope will set the standard for the characterization of the future systems. A novel iterative reconstruction algorithm has been tried on the projection images obtained from the tomosynthesis system. Our algorithm has demonstrated image quality that is on par with the other tomosynthesis systems under development

    Advancing combined radiological and optical scanning for breast-conserving surgery margin guidance

    Get PDF
    Breast cancer is one of the most common types of cancer worldwide, and standard-of-care for early-stage disease typically involves a lumpectomy or breast-conserving surgery (BCS). BCS involves the local resection of cancerous tissue, while sparring as much healthy tissue as possible. State-of-the-art methods for intraoperatively evaluating BCS margins are limited. Approximately 20% of BCS cases result in a tissue resection with cancer at or near the resection surface (i.e., a positive margin). A two-fold increase in ipsilateral breast cancer recurrence is associated with the presence of one or more positive margins. Consequently, positive margins often necessitate costly re-excision procedures to achieve a curative outcome. X-ray micro-computed tomography (CT) is emerging as a powerful ex vivo specimen imaging technology, as it provides robust three-dimensional sensing of tumor morphology rapidly. However, X-ray attenuation lacks contrast between soft tissues that are important for surgical decision making during BCS. Optical structured light imaging, including spatial frequency domain imaging and active line scan imaging, can act as adjuvant tools to complement micro-CT, providing wide field-of-view, non-contact sensing of relevant breast tissue subtypes on resection margins that cannot be differentiated by micro-CT alone. This thesis is dedicated to multimodal imaging of BCS tissues to ultimately improve intraoperative BCS margin assessment, reducing the number of positive margins after initial surgeries and thereby reducing the need for costly follow-up procedures. Volumetric sensing of micro-CT is combined with surface-weighted, sub-diffuse optical reflectance derived from high spatial frequency structured light imaging. Sub-diffuse reflectance plays the key role of providing enhanced contrast to a suite of normal, abnormal benign, and malignant breast tissue subtypes. This finding is corroborated through clinical studies imaging BCS specimen slices post-operatively and is further investigated through an observational clinical trial focused on combined, intraoperative micro-CT and optical imaging of whole, freshly resected BCS tumors. The central thesis of this work is that combining volumetric X-ray imaging and sub-diffuse optical scanning provides a synergistic multimodal imaging solution to margin assessment, one that can be readily implemented or retrofitted in X-ray specimen imaging systems and that could meaningfully improve surgical guidance during initial BCS procedures
    corecore