75,988 research outputs found

    Biased Finger Trees and Three-Dimensional Layers of Maxima

    Get PDF

    Comparison of coherent and weakly incoherent transport models for the interlayer magnetoresistance of layered Fermi liquids

    Get PDF
    The interlayer magnetoresistance of layered metals in a tilted magnetic field is calculated for two distinct models for the interlayer transport. The first model involves coherent interlayer transport and makes use of results of semi-classical or Bloch-Boltzmann transport theory. The second model involves weakly incoherent interlayer transport where the electron is scattered many times within a layer before tunneling into the next layer. The results are relevant to the interpretation of experiments on angular-dependent magnetoresistance oscillations (AMRO) in quasi-one- and quasi-two-dimensional metals. We find that the dependence of the magnetoresistance on the direction of the magnetic field is identical for both models except when the field is almost parallel to the layers. An important implication of this result is that a three-dimensional Fermi surface is not necessary for the observation of the Yamaji and Danner oscillations seen in quasi-two- and quasi-one-dimensional metals, respectively. A universal expression is given for the dependence of the resistance at AMRO maxima and minima on the magnetic field and scattering time (and thus the temperature). We point out three distinctive features of coherent interlayer transport: (i) a beat frequency in the magnetic oscillations of quasi-two-dimensional systems, (ii) a peak in the angular-dependent magnetoresistance when the field is sufficiently large and parallel to the layers, and (iii) a crossover from a linear to a quadratic field dependence for the magnetoresistance when the field is parallel to the layers. Properties (i) and (ii) are compared with published experimental data for a range of quasi-two-dimensional organic metals and for Sr2RuO4.Comment: 21 pages, RevTeX + epsf, 4 figures. Published version. Subsection added. References update

    Multiperiodic magnetic structures in Hubbard superlattices

    Full text link
    We consider fermions in one-dimensional superlattices (SL's), modeled by site-dependent Hubbard-U couplings arranged in a repeated pattern of repulsive (i.e., U>0) and free (U=0) sites. Density Matrix Renormalization Group (DMRG) diagonalization of finite systems is used to calculate the local moment and the magnetic structure factor in the ground state. We have found four regimes for magnetic behavior: uniform local moments forming a spin-density wave (SDW), `floppy' local moments with short-ranged correlations, local moments on repulsive sites forming long-period SDW's superimposed with short-ranged correlations, and local moments on repulsive sites solely with long-period SDW's; the boundaries between these regimes depend on the range of electronic densities, rho, and on the SL aspect ratio. Above a critical electronic density, rho_{uparrow downarrow}, the SDW period oscillates both with rho and with the spacer thickness. The former oscillation allows one to reproduce all SDW wave vectors within a small range of electronic densities, unlike the homogeneous system. The latter oscillation is related to the exchange oscillation observed in magnetic multilayers. A crossover between regimes of `thin' to `thick' layers has also been observed.Comment: 9 two-column pages, 10 figure

    Quantum Hall Effect induced by electron-electron interaction in disordered GaAs layers with 3D spectrum

    Full text link
    It is shown that the observed Quantum Hall Effect in epitaxial layers of heavily doped n-type GaAs with thickness (50-140 nm) larger the mean free path of the conduction electrons (15-30 nm) and, therefore, with a three-dimensional single-particle spectrum is induced by the electron-electron interaction. The Hall resistance R_xy of the thinnest sample reveals a wide plateau at small activation energy E_a=0.4 K found in the temperature dependence of the transverse resistance R_xx. The different minima in the transverse conductance G_xx of the different samples show a universal temperature dependence (logarithmic in a large range of rescaled temperatures T/T_0) which is reminiscent of electron-electron-interaction effects in coherent diffusive transport.Comment: 6 pages, 3 figures, 1 tabl

    Aspects of Defect Topology in Smectic Liquid Crystals

    Get PDF
    We study the topology of smectic defects in two and three dimensions. We give a topological classification of smectic point defects and disclination lines in three dimensions. In addition we describe the combination rules for smectic point defects in two and three dimensions, showing how the broken translational symmetry of the smectic confers a path dependence on the result of defect addition.Comment: 19 pages, 13 figure

    Friedel oscillations responsible for stacking fault of adatoms: The case of Mg(0001) and Be(0001)

    Get PDF
    We perform a first-principles study of Mg adatom and adislands on the Mg(0001) surface, and Be adatom on Be(0001), to obtain further insights into the previously reported energetic preference of the fcc faulty stacking of Mg monomers on Mg(0001). We first provide a viewpoint on how Friedel oscillations influence ionic relaxation on these surfaces. Our three-dimensional charge-density analysis demonstrates that Friedel oscillations have maxima which are more spatially localized than what one-dimensional average density or two-dimensional cross sectional plots could possibly inform: The well-known charge-density enhancement around the topmost surface layer of Mg(0001) is strongly localized at its fcc hollow sites. The charge accumulation at this site explains the energetically preferred stacking fault of the Mg monomer, dimer and trimer. Yet, larger islands prefer the normal hcp stacking. Surprisingly, the mechanism by which the fcc site becomes energetically more favorable is not that of enhancing the surface-adatom bonds but rather those between surface atoms. To confirm our conclusions, we analyze the stacking of Be adatom on Be(0001) - a surface also largely influenced by Friedel oscillations. We find, in fact, a much stronger effect: The charge enhancement at the fcc site is even larger and, consequently, the stacking-fault energy favoring the fcc site is quite large, 44 meV.Comment: Submitted to Physical Review

    Topological correction of hypertextured implicit surfaces for ray casting

    Get PDF
    Hypertextures are a useful modelling tool in that they can add three-dimensional detail to the surface of otherwise smooth objects. Hypertextures can be rendered as implicit surfaces, resulting in objects with a complex but well defined boundary. However, representing a hypertexture as an implicit surface often results in many small parts being detached from the main surface, turning an object into a disconnected set. Depending on the context, this can detract from the realism in a scene where one usually does not expect a solid object to have clouds of smaller objects floating around it. We present a topology correction technique, integrated in a ray casting algorithm for hypertextured implicit surfaces, that detects and removes all the surface components that have become disconnected from the main surface. Our method works with implicit surfaces that are C2 continuous and uses Morse theory to find the critical points of the surface. The method follows the separatrix lines joining the critical points to isolate disconnected components
    • …
    corecore