73 research outputs found

    Land cover and forest mapping in boreal zone using polarimetric and interferometric SAR data

    Get PDF
    Remote sensing offers a wide range of instruments suitable to meet the growing need for consistent, timely and cost-effective monitoring of land cover and forested areas. One of the most important instruments is synthetic aperture radar (SAR) technology, where transfer of advanced SAR imaging techniques from mostly experimental small test-area studies to satellites enables improvements in remote assessment of land cover on a global scale. Globally, forests are very suitable for remote sensing applications due to their large dimensions and relatively poor accessibility in distant areas. In this thesis, several methods were developed utilizing Earth observation data collected using such advanced SAR techniques, as well as their application potential was assessed. The focus was on use of SAR polarimetry and SAR interferometry to improve performance and robustness in assessment of land cover and forest properties in the boreal zone. Particular advances were achieved in land cover classification and estimating several key forest variables, such as forest stem volume and forest tree height. Important results reported in this thesis include: improved polarimetric SAR model-based decomposition approach suitable for use in boreal forest at L-band; development and demonstration of normalization method for fully polarimetric SAR mosaics, resulting in improved classification performance and suitable for wide-area mapping purposes; establishing new inversion procedure for robust forest stem volume retrieval from SAR data; developing semi-empirical method and demonstrating potential for soil type separation (mineral soil, peatland) under forested areas with L-band polarimetric SAR; developing and demonstrating methodology for simultaneous retrieval of forest tree height and radiowave attenuation in forest layer from inter-ferometric SAR data, resulting in improved accuracy and more stable estimation of forest tree height

    Parameters affecting interferometric coherence and implications for long-term operational monitoring of mining-induced surface deformation

    Get PDF
    Includes abstract.Includes bibliographical references.Surface deformation due to underground mining poses risks to health and safety as well as infrastructure and the environment. Consequently, the need for long-term operational monitoring systems exists. Traditional field-based measurements are point-based meaning that the full extent of deforming areas is poorly understood. Field-based techniques are also labour intensive if large areas are to be monitored on a regular basis. To overcome these limitations, this investigation considered traditional and advanced differential radar interferometry techniques for their ability to monitor large areas over time, remotely. An area known to be experiencing mining induced surface deformation was used as test case. The agricultural nature of the area implied that signal decorrelation effects were expected. Consequently, four sources of data, captured at three wavelengths by earth-orbiting satellites were obtained. This provided the opportunity to investigate different phase decorrelation effects on data from standard imaging platforms using real-world deformation phenomenon as test-case. The data were processed using standard dInSAR and polInSAR techniques. The deformation measurement results together with an analysis of parameters most detrimental to long-term monitoring were presented. The results revealed that, contrary to the hypothesis, polInSAR techniques did not provide an enhanced ability to monitor surface deformation compared to dInSAR techniques. Although significant improvements in coherence values were obtained, the spatial heterogeneity of phase measurements could not be improved. Consequently, polInSAR could not overcome ecorrelation associated with vegetation cover and evolving land surfaces. However, polarimetric information could be used to assess the scattering behaviour of the surface, thereby guiding the definition of optimal sensor configuration for long-term monitoring. Despite temporal and geometric decorrelation, the results presented demonstrated that mining-induced deformation could be measured and monitored using dInSAR techniques. Large areas could be monitored remotely and the areal extent of deforming areas could be assessed, effectively overcoming the limitations of field-based techniques. Consequently, guidelines for the optimal sensor configuration and image acquisition strategy for long-term operational monitoring of mining-induced surface deformation were provided

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    Wetland mapping and monitoring using polarimetric and interferometric synthetic aperture radar (SAR) data and tools

    Get PDF
    Wetlands are home to a great variety of flora and fauna species and provide several unique environmental functions, such as controlling floods, improving water-quality, supporting wildlife habitat, and shoreline stabilization. Detailed information on spatial distribution of wetland classes is crucial for sustainable management and resource assessment. Furthermore, hydrological monitoring of wetlands is also important for maintaining and preserving the habitat of various plant and animal species. This thesis investigates the existing knowledge and technological challenges associated with wetland mapping and monitoring and evaluates the limitations of the methodologies that have been developed to date. The study also proposes new methods to improve the characterization of these productive ecosystems using advanced remote sensing (RS) tools and data. Specifically, a comprehensive literature review on wetland monitoring using Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) techniques is provided. The application of the InSAR technique for wetland mapping provides the following advantages: (i) the high sensitivity of interferometric coherence to land cover changes is taken into account and (ii) the exploitation of interferometric coherence for wetland classification further enhances the discrimination between similar wetland classes. A statistical analysis of the interferometric coherence and SAR backscattering variation of Canadian wetlands, which are ignored in the literature, is carried out using multi-temporal, multi-frequency, and multi-polarization SAR data. The study also examines the capability of compact polarimetry (CP) SAR data, which will be collected by the upcoming RADARSAT Constellation Mission (RCM) and will constitute the main source of SAR observation in Canada, for wetland mapping. The research in this dissertation proposes a methodology for wetland classification using the synergistic use of intensity, polarimetry, and interferometry features using a novel classification framework. Finally, this work introduces a novel model based on the deep convolutional neural network (CNN) for wetland classification that can be trained in an end-to-end scheme and is specifically designed for the classification of wetland complexes using polarimetric SAR (PolSAR) imagery. The results of the proposed methods are promising and will significantly contribute to the ongoing efforts of conservation strategies for wetlands and monitoring changes. The approaches presented in this thesis serve as frameworks, progressing towards an operational methodology for mapping wetland complexes in Canada, as well as other wetlands worldwide with similar ecological characteristics
    • …
    corecore