910 research outputs found

    Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

    Get PDF
    A hypergraph is said to be Ο‡\chi-colorable if its vertices can be colored with Ο‡\chi colors so that no hyperedge is monochromatic. 22-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 22-colorable kk-uniform hypergraph, it is NP-hard to find a 22-coloring miscoloring fewer than a fraction 2βˆ’k+12^{-k+1} of hyperedges (which is achieved by a random 22-coloring), and the best algorithms to color the hypergraph properly require β‰ˆn1βˆ’1/k\approx n^{1-1/k} colors, approaching the trivial bound of nn as kk increases. In this work, we study the complexity of approximate hypergraph coloring, for both the maximization (finding a 22-coloring with fewest miscolored edges) and minimization (finding a proper coloring using fewest number of colors) versions, when the input hypergraph is promised to have the following stronger properties than 22-colorability: (A) Low-discrepancy: If the hypergraph has discrepancy β„“β‰ͺk\ell \ll \sqrt{k}, we give an algorithm to color the it with β‰ˆnO(β„“2/k)\approx n^{O(\ell^2/k)} colors. However, for the maximization version, we prove NP-hardness of finding a 22-coloring miscoloring a smaller than 2βˆ’O(k)2^{-O(k)} (resp. kβˆ’O(k)k^{-O(k)}) fraction of the hyperedges when β„“=O(log⁑k)\ell = O(\log k) (resp. β„“=2\ell=2). Assuming the UGC, we improve the latter hardness factor to 2βˆ’O(k)2^{-O(k)} for almost discrepancy-11 hypergraphs. (B) Rainbow colorability: If the hypergraph has a (kβˆ’β„“)(k-\ell)-coloring such that each hyperedge is polychromatic with all these colors, we give a 22-coloring algorithm that miscolors at most kβˆ’Ξ©(k)k^{-\Omega(k)} of the hyperedges when β„“β‰ͺk\ell \ll \sqrt{k}, and complement this with a matching UG hardness result showing that when β„“=k\ell =\sqrt{k}, it is hard to even beat the 2βˆ’k+12^{-k+1} bound achieved by a random coloring.Comment: Approx 201

    Coloring d-Embeddable k-Uniform Hypergraphs

    Full text link
    This paper extends the scenario of the Four Color Theorem in the following way. Let H(d,k) be the set of all k-uniform hypergraphs that can be (linearly) embedded into R^d. We investigate lower and upper bounds on the maximum (weak and strong) chromatic number of hypergraphs in H(d,k). For example, we can prove that for d>2 there are hypergraphs in H(2d-3,d) on n vertices whose weak chromatic number is Omega(log n/log log n), whereas the weak chromatic number for n-vertex hypergraphs in H(d,d) is bounded by O(n^((d-2)/(d-1))) for d>2.Comment: 18 page

    Not All Saturated 3-Forests Are Tight

    Full text link
    A basic statement in graph theory is that every inclusion-maximal forest is connected, i.e. a tree. Using a definiton for higher dimensional forests by Graham and Lovasz and the connectivity-related notion of tightness for hypergraphs introduced by Arocha, Bracho and Neumann-Lara in, we provide an example of a saturated, i.e. inclusion-maximal 3-forest that is not tight. This resolves an open problem posed by Strausz

    DP-colorings of uniform hypergraphs and splittings of Boolean hypercube into faces

    Full text link
    We develop a connection between DP-colorings of kk-uniform hypergraphs of order nn and coverings of nn-dimensional Boolean hypercube by pairs of antipodal (nβˆ’k)(n-k)-dimensional faces. Bernshteyn and Kostochka established that the lower bound on edges in a non-2-DP-colorable kk-uniform hypergraph is equal to 2kβˆ’12^{k-1} for odd kk and 2kβˆ’1+12^{k-1}+1 for even kk. They proved that these bounds are tight for k=3,4k=3,4. In this paper, we prove that the bound is achieved for all odd kβ‰₯3k\geq 3.Comment: The previous versions of paper contains a significant erro
    • …
    corecore