181 research outputs found

    Rounding-based heuristics for nonconvex MINLPs

    Get PDF
    We propose two primal heuristics for nonconvex mixed-integer nonlinear programs. Both are based on the idea of rounding the solution of a continuous nonlinear program subject to linear constraints. Each rounding step is accomplished through the solution of a mixed-integer linear program. Our heuristics use the same algorithmic scheme, but they differ in the choice of the point to be rounded (which is feasible for nonlinear constraints but possibly fractional) and in the linear constraints. We propose a feasibility heuristic, that aims at finding an initial feasible solution, and an improvement heuristic, whose purpose is to search for an improved solution within the neighborhood of a given point. The neighborhood is defined through local branching cuts or box constraints. Computational results show the effectiveness in practice of these simple ideas, implemented within an open-source solver for nonconvex mixed-integer nonlinear programs

    Ten years of feasibility pump, and counting

    Get PDF
    The Feasibility Pump (fp) is probably the best-known primal heuristic for mixed-integer programming. The original work by Fischetti et al. (Math Program 104(1):91\u2013104, 2005), which introduced the heuristic for 0\u20131 mixed-integer linear programs, has been succeeded by more than twenty follow-up publications which improve the performance of the fp and extend it to other problem classes. Year 2015 was the tenth anniversary of the first fp publication. The present paper provides an overview of the diverse Feasibility Pump literature that has been presented over the last decade

    Multi-objective optimisation: algorithms and application to computer-aided molecular and process design

    Get PDF
    Computer-Aided Molecular Design (CAMD) has been put forward as a powerful and systematic technique that can accelerate the identification of new candidate molecules. Given the benefits of CAMD, the concept has been extended to integrated molecular and process design, usually referred to as Computer-Aided Molecular and Process Design (CAMPD). In CAMPD approaches, not only is the interdependence between the properties of the molecules and the process performance captured, but it is also possible to assess the optimal overall performance of a given fluid using an objective function that may be based on process economics, energy efficiency, or environmental criteria. Despite the significant advances made in the field of CAM(P)D, there are remaining challenges in handling the complexities arising from the large mixed-integer nonlinear structure-property and process models and the presence of conflicting performance criteria that cannot be easily merged into a single metric. Many of the algorithms proposed to date, however, resort to single-objective decomposition-based approaches. To overcome these challenges, a novel CAMPD optimisation framework is proposed, in the first part of thesis, in the context of identifying optimal amine solvents for carbon dioxide (CO2) chemical absorption. This requires development and validation of a model that enables the prediction of process performance metrics for a wide range of solvents for which no experimental data exist. An equilibrium-stage model that incorporates the SAFT-γ Mie group contribution approach is proposed to provide an appropriate balance between accuracy and predictive capability with varying molecular design spaces. In order to facilitate the convergence behaviour of the process-molecular model, a tailored initialisation strategy is established based on the inside-out algorithm. Novel feasibility tests that are capable of recognising infeasible regions of molecular and process domains are developed and incorporated into an outer-approximation framework to increase solution robustness. The efficiency of the proposed algorithm is demonstrated by applying it to the design of CO2 chemical absorption processes. The algorithm is found to converge successfully in all 150 runs carried out. To derive greater insights into the interplay between solvent and process performance, it is desirable to consider multiple objectives. In the second part of the thesis, we thus explore the relative performance of five multi-objective optimisations (MOO) solution techniques, modified from the literature to address nonconvex MINLPs, on CAM(P)D problems to gain a better understanding of the performance of different algorithms in identifying the Pareto front efficiently. The combination of the sandwich algorithm with a multi-level single-linkage algorithm to solve nonconvex subproblems is found to perform best on average. Next, a robust algorithm for bi-objective optimisation (BOO), the SDNBI algorithm, is designed to address the theoretical and numerical challenges associated with the solution of general nonconvex and discrete BOO problems. The main improvements in the development of the algorithm are focused on the effective exploration of the nonconvex regions of the Pareto front and the early identification of regions where no additional Pareto solutions exist. The performance of the algorithm is compared to that of the sandwich algorithm and the modified normal boundary intersection method (mNBI) over a set of literature benchmark problems and molecular design problems. The SDNBI found to provide the most evenly distributed approximation of the Pareto front as well as useful information on regions of the objective space that do not contain a nondominated point. The advances in this thesis can accelerate the discovery of novel solvents for CO2 capture that can achieve improved process performance. More broadly, the modelling and algorithmic development presented extend the applicability of CAMPD and MOO based CAMD/CAMPD to a wider range of applications.Open Acces

    Simultaneous minimisation of water and energy within a water and membrane network superstructure

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering, 2015The scarcity of water and strict environmental regulations have made sustainable engineering a prime concern in the process and manufacturing industries. Water minimisation involves the reduction of freshwater use and effluent discharge in chemical plants. This is achieved through water reuse, water recycle and water regeneration. Optimisation of the water network (WN) superstructure considers all possible interconnections between water sources, water sinks and regenerator units (membrane systems). In most published works, membrane systems have been represented using the “black-box” approach, which uses a simplified linear model to represent the membrane systems. This approach does not give an accurate representation of the energy consumption and associated costs of the membrane systems. The work presented in this dissertation therefore looks at the incorporation of a detailed reverse osmosis network (RON) superstructure within a water network superstructure in order to simultaneously minimise water, energy, operating and capital costs. The WN consists of water sources, water sinks and reverse osmosis (RO) units for the partial treatment of the contaminated water. An overall mixed-integer nonlinear programming (MINLP) framework is developed, that simultaneously evaluates both water recycle/reuse and regeneration reuse/recycle opportunities. The solution obtained from optimisation provides the optimal connections between various units in the network arrangement, size and number of RO units, booster pumps as well as energy recovery turbines. The work looks at four cases in order to highlight the importance of including a detailed regeneration network within the water network instead of the traditional “black-box’’ model. The importance of using a variable removal ratio in the model is also highlighted by applying the work to a literature case study, which leads to a 28% reduction in freshwater consumption and 80% reduction in wastewater generation.GR201

    Decomposition methods for mixed-integer nonlinear programming

    Get PDF
    En esta tesis se pueden distinguir dos líneas principales de investigación. La primera se ocupa de los métodos de Aproximación Externa (Outer Approximation), mientras que la segunda estudia un solución basada en el método de Generación de Columnas (Column Generation). En esta tesis investigamos y analizamos aspectos teóricos y prácticos de ambas ideas dentro del marco de la descomposición. El objetivo principal de este estudio es desarrollar métodos sistemáticos basados en la descomposición para resolver problemas de gran escala utilizando los métodos de Aproximación Externa y Generación de Columnas. En el capítulo 1 se introduce un concepto importante necesario para la descomposición. Este concepto consiste en una reformulación separable en bloques del problema de programación no lineal de enteros mixtos. En el capítulo 1 también se hace una descripción de los métodos mencionados anteriormente, incluyendo los de Ramificación y Acotación, además de otros conceptos clave que son necesarios para esta tesis, como por ejemplo los de Aproximación Interior, etc. Los capítulos 2, 3 y 4 investigan el uso del concepto de Aproximación Externa. Específicamente, en el capítulo 2 se presenta un algoritmo de Aproximación Externa basado en descomposición para resolver problemas de programación no-lineales convexos enteros-mixtos, basados en la construcción de hiperplanos soporte para un conjunto factible. El capítulo 3 amplia el marco de aplicación de un algoritmo de Aproximación Externa basado en descomposición, a problemas de programación no lineales no convexos enteros mixtos, introduciendo una Aproximación Externa convexa por partes de un conjunto factible no convexo. Otra perspectiva de la definición de Aproximación Externa para problemas no convexos se considera en el capítulo 4, que presenta un algoritmo de Refinamiento Interno y Externo basado en descomposición, que construye una Aproximación Externa al mismo tiempo que calcula la Aproximación Interna usando Generación de Columnas. La Aproximación Externa usada en el algoritmo de Refinamiento Interno y Externo se basa en la visión multiobjetivo de la denominada versión recursos restringidos del problema original. Dos capítulos están dedicados a la Generación de Columnas. En el capítulo 4 se presenta un algoritmo de Generación de Columnas para calcular una Aproximación Interna del problema original. Además se describe un algoritmo heurístico basado en particiones que usa un refinamiento de la Aproximación Interna. El capítulo 5 analiza varias técnicas de aceleración para la Generación de Columnas, donde se describe un algoritmo heurístico general basado en la Generación de Columnas, que puede generar varias soluciones candidatas de alta calidad. El capítulo 6 contiene una breve descripción de la implementación en Python de DECOGO (software de programación no lineal de enteros mixtos).La programación no lineal de enteros mixtos es un campo de optimización importante y desafiante. Este tipo de problemas pueden contener variables continuas e enteras, así como restricciones lineales y no lineales. Esta clase de problemas tiene un papel fundamental en la ciencia y la industria, ya que proporcionan una forma precisa de describir fenómenos en diferentes áreas como ingeniería química y mecánica, cadena de suministro, gestión, etc. La mayoría de los algoritmos de última generación para resolver los problemas de programación no lineal de enteros mixtos no convexos están basados en los métodos de ramificación y acotación. El principal inconveniente de este enfoque es que el árbol de búsqueda puede crecer muy rápido impidiendo que el algoritmo encuentre una solución de alta calidad en un tiempo razonable. Una posible alternativa que evite la generación de grandes árboles consiste en hacer uso del concepto de descomposición para hacer que el procedimiento sea más manejable. La descomposición proporciona un marco general en el que el problema original se divide en pequeños subproblemas y sus resultados se combinan en un problema maestro más sencillo. Esta tesis analiza los métodos de descomposición para la programación no lineal de enteros mixtos. El principal objetivo de esta tesis es desarrollar métodos alternativos al de ramificación y acotación, basados en el concepto de descomposición. Para la industria y la ciencia, es importante calcular una solución óptima, o al menos, mejorar la mejor solución disponible hasta ahora. Además, esto debe hacerse en un plazo de tiempo razonable. Por lo tanto, el objetivo de esta tesis es diseñar algoritmos eficientes que permitan resolver problemas de gran escala que tienen una aplicación práctica directa. En particular, nos centraremos en modelos que pueden ser aplicados en la planificación y operación de sistemas energéticos

    Optimization of Critical Infrastructure with Fluids

    Full text link
    Many of the world's most critical infrastructure systems control the motion of fluids. Despite their importance, the design, operation, and restoration of these infrastructures are sometimes carried out suboptimally. One reason for this is the intractability of optimization problems involving fluids, which are often constrained by partial differential equations or nonconvex physics. To address these challenges, this dissertation focuses on developing new mathematical programming and algorithmic techniques for optimization problems involving difficult nonlinear constraints that model a fluid's behavior. These new contributions bring many important problems within the realm of tractability. The first focus of this dissertation is on surface water systems. Specifically, we introduce the Optimal Flood Mitigation Problem, which optimizes the positioning of structural measures to protect critical assets with respect to a predefined flood scenario. Two solution approaches are then developed. The first leverages mathematical programming but does not tractably scale to realistic scenarios. The second uses a physics-inspired metaheuristic, which is found to compute good quality solutions for realistic scenarios. The second focus is on potable water distribution systems. Two foundational problems are considered. The first is the optimal water network design problem, for which we derive a novel convex reformulation, then develop an algorithm found to be more effective than the current state of the art on select instances. The second is the optimal pump scheduling (or Optimal Water Flow) problem, for which we develop a mathematical programming relaxation and various algorithmic techniques to improve convergence. The final focus is on natural gas pipeline systems. Two novel problems are considered. The first is the Maximal Load Delivery (MLD) problem for gas pipelines, which aims at finding a feasible steady-state operating point that maximizes load delivery for a severely damaged gas network. The second is the joint gas-power MLD problem, which couples damaged gas and power networks at gas-fired generators. In both problems, convex relaxations of nonconvex dynamical constraints are developed to increase tractability.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169849/1/tasseff_1.pd

    Inner Parallel Sets in Mixed-Integer Optimization

    Get PDF
    This thesis contains an extensive study of inner parallel sets in mixed-integer optimization. Inner parallel sets are a recent idea in this context and offer a possibility to relax the difficulties imposed by integrality constraints by guaranteeing feasibility of roundings of their (continuous) elements. To be able to use inner parallel sets algorithmically, various modifications, such as their enlargements and inner and outer approximations, are helpful and sometimes even necessary. Such ideas are introduced and investigated in this thesis, both theoretically as well as computationally. From our theoretical study of inner parallel sets emerge a number of feasible rounding approaches which mainly focus on the computation of good feasible points for mixed-integer linear and nonlinear minimization problems. Good feasible points are useful in the context of solving these problems by providing tight upper bounds on the objective value. In especially difficult cases, feasible rounding approaches may also be considered as an alternative to solving a problem. The contributions of this thesis include a thorough discussion of possibilities to enlarge inner parallel sets in the linear as well as in the nonlinear setting. Moreover, we introduce a novel cutting plane method based on inner parallel sets for mixed-integer convex minimization problems. This method, in addition to computing a good feasible point, also provides a lower bound on the objective value which is another important ingredient for solving such minimization problems. We study the possibility of dealing with equality constraints on integer variables which at first glance seem to prevent a nonempty inner parallel set. Under the occurrence of such constraints, we show that inner parallel sets can be nonempty in a reduced variable space, which allows the application of feasible rounding approaches. Finally, we investigate the behavior of inner parallel sets when integrated into search trees. Our study gives rise to a novel diving method which turns out to be a major improvement over standalone feasible rounding approaches. We test the introduced methods on standard libraries for mixed-integer linear, convex and nonconvex minimization problems separately in several computational studies. The computational results illustrate the potential of our ideas

    Optimization of large-scale water supply networks for energy efficient operations : models and algorithms

    Get PDF

    Optimal Design of Composite Structures Under Manufacturing Constraints

    Get PDF
    corecore