800 research outputs found

    Unsupervised brain anomaly detection in MR images

    Get PDF
    Brain disorders are characterized by morphological deformations in shape and size of (sub)cortical structures in one or both hemispheres. These deformations cause deviations from the normal pattern of brain asymmetries, resulting in asymmetric lesions that directly affect the patient’s condition. Unsupervised methods aim to learn a model from unlabeled healthy images, so that an unseen image that breaks priors of this model, i.e., an outlier, is considered an anomaly. Consequently, they are generic in detecting any lesions, e.g., coming from multiple diseases, as long as these notably differ from healthy training images. This thesis addresses the development of solutions to leverage unsupervised machine learning for the detection/analysis of abnormal brain asymmetries related to anomalies in magnetic resonance (MR) images. First, we propose an automatic probabilistic-atlas-based approach for anomalous brain image segmentation. Second, we explore an automatic method for the detection of abnormal hippocampi from abnormal asymmetries based on deep generative networks and a one-class classifier. Third, we present a more generic framework to detect abnormal asymmetries in the entire brain hemispheres. Our approach extracts pairs of symmetric regions — called supervoxels — in both hemispheres of a test image under study. One-class classifiers then analyze the asymmetries present in each pair. Experimental results on 3D MR-T1 images from healthy subjects and patients with a variety of lesions show the effectiveness and robustness of the proposed unsupervised approaches for brain anomaly detection

    Developing advanced mathematical models for detecting abnormalities in 2D/3D medical structures.

    Get PDF
    Detecting abnormalities in two-dimensional (2D) and three-dimensional (3D) medical structures is among the most interesting and challenging research areas in the medical imaging field. Obtaining the desired accurate automated quantification of abnormalities in medical structures is still very challenging. This is due to a large and constantly growing number of different objects of interest and associated abnormalities, large variations of their appearances and shapes in images, different medical imaging modalities, and associated changes of signal homogeneity and noise for each object. The main objective of this dissertation is to address these problems and to provide proper mathematical models and techniques that are capable of analyzing low and high resolution medical data and providing an accurate, automated analysis of the abnormalities in medical structures in terms of their area/volume, shape, and associated abnormal functionality. This dissertation presents different preliminary mathematical models and techniques that are applied in three case studies: (i) detecting abnormal tissue in the left ventricle (LV) wall of the heart from delayed contrast-enhanced cardiac magnetic resonance images (MRI), (ii) detecting local cardiac diseases based on estimating the functional strain metric from cardiac cine MRI, and (iii) identifying the abnormalities in the corpus callosum (CC) brain structure—the largest fiber bundle that connects the two hemispheres in the brain—for subjects that suffer from developmental brain disorders. For detecting the abnormal tissue in the heart, a graph-cut mathematical optimization model with a cost function that accounts for the object’s visual appearance and shape is used to segment the the inner cavity. The model is further integrated with a geometric model (i.e., a fast marching level set model) to segment the outer border of the myocardial wall (the LV). Then the abnormal tissue in the myocardium wall (also called dead tissue, pathological tissue, or infarct area) is identified based on a joint Markov-Gibbs random field (MGRF) model of the image and its region (segmentation) map that accounts for the pixel intensities and the spatial interactions between the pixels. Experiments with real in-vivo data and comparative results with ground truth (identified by a radiologist) and other approaches showed that the proposed framework can accurately detect the pathological tissue and can provide useful metrics for radiologists and clinicians. To estimate the strain from cardiac cine MRI, a novel method based on tracking the LV wall geometry is proposed. To achieve this goal, a partial differential equation (PDE) method is applied to track the LV wall points by solving the Laplace equation between the LV contours of each two successive image frames over the cardiac cycle. The main advantage of the proposed tracking method over traditional texture-based methods is its ability to track the movement and rotation of the LV wall based on tracking the geometric features of the inner, mid-, and outer walls of the LV. This overcomes noise sources that come from scanner and heart motion. To identify the abnormalities in the CC from brain MRI, the CCs are aligned using a rigid registration model and are segmented using a shape-appearance model. Then, they are mapped to a simple unified space for analysis. This work introduces a novel cylindrical mapping model, which is conformal (i.e., one to one transformation and bijective), that enables accurate 3D shape analysis of the CC in the cylindrical domain. The framework can detect abnormalities in all divisions of the CC (i.e., splenium, rostrum, genu and body). In addition, it offers a whole 3D analysis of the CC abnormalities instead of only area-based analysis as done by previous groups. The initial classification results based on the centerline length and CC thickness suggest that the proposed CC shape analysis is a promising supplement to the current techniques for diagnosing dyslexia. The proposed techniques in this dissertation have been successfully tested on complex synthetic and MR images and can be used to advantage in many of today’s clinical applications of computer-assisted medical diagnostics and intervention

    Evaluating the anticipated outcomes of MRI seizure image from open-source tool- Prototype approach

    Full text link
    Epileptic Seizure is an abnormal neuronal exertion in the brain, affecting nearly 70 million of the world's population (Ngugi et al., 2010). So many open-source neuroimaging tools are used for metabolism checkups and analysis purposes. The scope of open-source tools like MATLAB, Slicer 3D, Brain Suite21a, SPM, and MedCalc are explained in this paper. MATLAB was used by 60% of the researchers for their image processing and 10% of them use their proprietary software. More than 30% of the researchers use other open-source software tools with their processing techniques for the study of magnetic resonance seizure image

    Shape analysis of the human brain.

    Get PDF
    Autism is a complex developmental disability that has dramatically increased in prevalence, having a decisive impact on the health and behavior of children. Methods used to detect and recommend therapies have been much debated in the medical community because of the subjective nature of diagnosing autism. In order to provide an alternative method for understanding autism, the current work has developed a 3-dimensional state-of-the-art shape based analysis of the human brain to aid in creating more accurate diagnostic assessments and guided risk analyses for individuals with neurological conditions, such as autism. Methods: The aim of this work was to assess whether the shape of the human brain can be used as a reliable source of information for determining whether an individual will be diagnosed with autism. The study was conducted using multi-center databases of magnetic resonance images of the human brain. The subjects in the databases were analyzed using a series of algorithms consisting of bias correction, skull stripping, multi-label brain segmentation, 3-dimensional mesh construction, spherical harmonic decomposition, registration, and classification. The software algorithms were developed as an original contribution of this dissertation in collaboration with the BioImaging Laboratory at the University of Louisville Speed School of Engineering. The classification of each subject was used to construct diagnoses and therapeutic risk assessments for each patient. Results: A reliable metric for making neurological diagnoses and constructing therapeutic risk assessment for individuals has been identified. The metric was explored in populations of individuals having autism spectrum disorders, dyslexia, Alzheimers disease, and lung cancer. Conclusion: Currently, the clinical applicability and benefits of the proposed software approach are being discussed by the broader community of doctors, therapists, and parents for use in improving current methods by which autism spectrum disorders are diagnosed and understood

    Doctor of Philosophy

    Get PDF
    dissertationStochastic methods, dense free-form mapping, atlas construction, and total variation are examples of advanced image processing techniques which are robust but computationally demanding. These algorithms often require a large amount of computational power as well as massive memory bandwidth. These requirements used to be ful lled only by supercomputers. The development of heterogeneous parallel subsystems and computation-specialized devices such as Graphic Processing Units (GPUs) has brought the requisite power to commodity hardware, opening up opportunities for scientists to experiment and evaluate the in uence of these techniques on their research and practical applications. However, harnessing the processing power from modern hardware is challenging. The di fferences between multicore parallel processing systems and conventional models are signi ficant, often requiring algorithms and data structures to be redesigned signi ficantly for efficiency. It also demands in-depth knowledge about modern hardware architectures to optimize these implementations, sometimes on a per-architecture basis. The goal of this dissertation is to introduce a solution for this problem based on a 3D image processing framework, using high performance APIs at the core level to utilize parallel processing power of the GPUs. The design of the framework facilitates an efficient application development process, which does not require scientists to have extensive knowledge about GPU systems, and encourages them to harness this power to solve their computationally challenging problems. To present the development of this framework, four main problems are described, and the solutions are discussed and evaluated: (1) essential components of a general 3D image processing library: data structures and algorithms, as well as how to implement these building blocks on the GPU architecture for optimal performance; (2) an implementation of unbiased atlas construction algorithms|an illustration of how to solve a highly complex and computationally expensive algorithm using this framework; (3) an extension of the framework to account for geometry descriptors to solve registration challenges with large scale shape changes and high intensity-contrast di fferences; and (4) an out-of-core streaming model, which enables developers to implement multi-image processing techniques on commodity hardware

    Content based retrieval of PET neurological images

    Get PDF
    Medical image management has posed challenges to many researchers, especially when the images have to be indexed and retrieved using their visual content that is meaningful to clinicians. In this study, an image retrieval system has been developed for 3D brain PET (Position emission tomography) images. It has been found that PET neurological images can be retrieved based upon their diagnostic status using only data pertaining to their content, and predominantly the visual content. During the study PET scans are spatially normalized, using existing techniques, and their visual data is quantified. The mid-sagittal-plane of each individual 3D PET scan is found and then utilized in the detection of abnormal asymmetries, such as tumours or physical injuries. All the asymmetries detected are referenced to the Talairarch and Tournoux anatomical atlas. The Cartesian co- ordinates in Talairarch space, of detected lesion, are employed along with the associated anatomical structure(s) as the indices within the content based image retrieval system. The anatomical atlas is then also utilized to isolate distinct anatomical areas that are related to a number of neurodegenerative disorders. After segmentation of the anatomical regions of interest algorithms are applied to characterize the texture of brain intensity using Gabor filters and to elucidate the mean index ratio of activation levels. These measurements are combined to produce a single feature vector that is incorporated into the content based image retrieval system. Experimental results on images with known diagnoses show that physical lesions such as head injuries and tumours can be, to a certain extent, detected correctly. Images with correctly detected and measured lesion are then retrieved from the database of images when a query pertains to the measured locale. Images with neurodegenerative disorder patterns have been indexed and retrieved via texture-based features. Retrieval accuracy is increased, for images from patients diagnosed with dementia, by combining the texture feature and mean index ratio value

    Characterizing and revealing biomarkers on patients with Cerebral Amyloid Angiopathy using artificial intelligence

    Get PDF
    Dissertação de mestrado em BioinformáticaCerebral Amyloid Angiopathy is a cerebrovascular disorder resulting from the deposition of an amyloidogenic protein in small and medium sized cortical and leptomeningeal vessels. A primary cause of spontaneous intracerebral haemorrhages, it manifests predominantly in the elder population. Although CAA is a common neuropathological finding on itself, it is also known to frequently occur in conjunction with Alzheimer’s disease, being sometimes misdiagnosed. Currently, CAA diagnosis is generally conducted by post-mortem examination or, in live patients by the examination of an evacuated hematoma or brain biopsy samples, which are typically unavailable. Therefore, a reliable and non-invasive method for diagnosing CAA would facilitate the clinical decision making and accelerate the clinical intervention. The main goal of this dissertation is to study the application of Machine Learning (ML) to reveal possible biomarkers to aid the diagnosis and early medical intervention, and better understand the disease. Therefore, three scenarios were tested: Classification of four neurodegenerative diseases with annotation data obtained from visual rating scores, age and gender; Classification of the diseases with radiomic data derived from the patient’s MRI; and a combination of the previous experiments. The results show that the application of Artificial intelligence in the medical field brings advantages to support the physicians in the decision making process and, at some point, make a correct prediction of the disease label. Although the results are satisfactory, there are still improvements to be done. For instance, image segmentation of cerebral lesions or brain regions and additional clinical information of the patients would be of value.Angiopatia Amiloide Cerebral (AAC) é uma doença vascular cerebral resultante da deposição de matéria amiloide. Principal causa de hemorragias cerebral espontâneas, a AAC manifesta se predominantemente na população idosa. Embora a AAC seja uma doença que por si só tem um grande impacto no grupo etário referido, ocorre em simultâneo com inúmeras outras doenças neurodegenerativas, como a doença de Alzheimer. Atualmente, o diagnóstico de AAC realiza-se quer em post-mortem, quer em pacientes vivos. No entanto, o diagnóstico em vida é conseguido por meio de biópsias de tecidos cerebrais, sendo um método invasivo, o que dificulta a intervenção clínica. Deste modo, torna-se imperativa a procura de alternativas fiáveis e não invasivas em vida para auxiliar o diagnóstico da doença e permitir a melhoria da qualidade de vida do paciente. Perante os progressos na área da tecnologia e medicina, esta dissertação propõe o estudo da aplicação de algoritmos de Machine Learning (ML) para revelar possíveis biomarcadores para auxiliar o diagnóstico e permitir uma intervenção precoce. Deste modo, foram testados três cenários distintos: a classificação de quatro doenças neurodegenerativas com dados anotados obtidos a partir de métricas visuais de avaliação da atrofia, idade e sexo; a classificação das doenças com dados gerados a partir de métodos radiómicos; e uma combinação das duas abordagens anteriores. Neste documento apresenta-se e discute-se os resultados obtidos com a aplicação de quatro diferentes algoritmos de ML que visam a deteção automática da doença associada à imagem testada. Adicionalmente, é feita uma análise crítica de quais as características mais relevantes que levaram à tomada de decisão por parte do algoritmo. Os resultados demonstram que através de aplicação de metodologias automáticas é possível o auxílio ao diagnostico médico por especialistas e, no limite, a realização de diagnostico automático com elevada precisão. Finalmente, são apresentadas possíveis alternativas de trabalho futuro para que os resultados possam ser aperfeiçoados, como por exemplo, a segmentação das regiões de interesse, i.e., identificação das lesões, aquando da anotação por especialistas. Mediante a inclusão dessa segmentação, uma vez que será mais especifica, os resultados serão, por sua vez, aprimorados
    • …
    corecore