4,753 research outputs found

    Local Approximation Schemes for Ad Hoc and Sensor Networks

    Get PDF
    We present two local approaches that yield polynomial-time approximation schemes (PTAS) for the Maximum Independent Set and Minimum Dominating Set problem in unit disk graphs. The algorithms run locally in each node and compute a (1+ε)-approximation to the problems at hand for any given ε > 0. The time complexity of both algorithms is O(TMIS + log*! n/εO(1)), where TMIS is the time required to compute a maximal independent set in the graph, and n denotes the number of nodes. We then extend these results to a more general class of graphs in which the maximum number of pair-wise independent nodes in every r-neighborhood is at most polynomial in r. Such graphs of polynomially bounded growth are introduced as a more realistic model for wireless networks and they generalize existing models, such as unit disk graphs or coverage area graphs

    Approximating Minimum Independent Dominating Sets in Wireless Networks

    Get PDF
    We present the first polynomial-time approximation scheme (PTAS) for the Minimum Independent Dominating Set problem in graphs of polynomially bounded growth. Graphs of bounded growth are used to characterize wireless communication networks, and this class of graph includes many models known from the literature, e.g. (Quasi) Unit Disk Graphs. An independent dominating set is a dominating set in a graph that is also independent. It thus combines the advantages of both structures, and there are many applications that rely on these two structures e.g. in the area of wireless ad hoc networks. The presented approach yields a robust algorithm, that is, the algorithm accepts any undirected graph as input, and returns a (1+")- pproximate minimum dominating set, or a certificate showing that the input graph does not reflect a wireless network
    • …
    corecore