5 research outputs found

    Deep-seeded Clustering for Unsupervised Valence-Arousal Emotion Recognition from Physiological Signals

    Full text link
    Emotions play a significant role in the cognitive processes of the human brain, such as decision making, learning and perception. The use of physiological signals has shown to lead to more objective, reliable and accurate emotion recognition combined with raising machine learning methods. Supervised learning methods have dominated the attention of the research community, but the challenge in collecting needed labels makes emotion recognition difficult in large-scale semi- or uncontrolled experiments. Unsupervised methods are increasingly being explored, however sub-optimal signal feature selection and label identification challenges unsupervised methods' accuracy and applicability. This article proposes an unsupervised deep cluster framework for emotion recognition from physiological and psychological data. Tests on the open benchmark data set WESAD show that deep k-means and deep c-means distinguish the four quadrants of Russell's circumplex model of affect with an overall accuracy of 87%. Seeding the clusters with the subject's subjective assessments helps to circumvent the need for labels.Comment: 7 pages, 1 figure, 2 table

    Active labeling in deep learning and its application to emotion prediction

    Get PDF
    Recent breakthroughs in deep learning have made possible the learning of deep layered hierarchical representations of sensory input. Stacked restricted Boltzmann machines (RBMs), also called deep belief networks (DBNs), and stacked autoencoders are two representative deep learning methods. The key idea is greedy layer-wise unsupervised pre-training followed by supervised fine-tuning, which can be done efficiently and overcomes the difficulty of local minima when training all layers of a deep neural network at once. Deep learning has been shown to achieve outstanding performance in a number of challenging real-world applications. Existing deep learning methods involve a large number of meta-parameters, such as the number of hidden layers, the number of hidden nodes, the sparsity target, the initial values of weights, the type of units, the learning rate, etc. Existing applications usually do not explain why the decisions were made and how changes would affect performance. Thus, it is difficult for a novice user to make good decisions for a new application in order to achieve good performance. In addition, most of the existing works are done on simple and clean datasets and assume a fixed set of labeled data, which is not necessarily true for real-world applications. The main objectives of this dissertation are to investigate the optimal meta-parameters of deep learning networks as well as the effects of various data pre-processing techniques, propose a new active labeling framework for cost-effective selection of labeled data, and apply deep learning to a real-world application--emotion prediction via physiological sensor data, based on real-world, complex, noisy, and heterogeneous sensor data. For meta-parameters and data pre-processing techniques, this study uses the benchmark MNIST digit recognition image dataset and a sleep-stage-recognition sensor dataset and empirically compares the deep network's performance with a number of different meta-parameters and decisions, including raw data vs. pre-processed data by Principal Component Analysis (PCA) with or without whitening, various structures in terms of the number of layers and the number of nodes in each layer, stacked RBMs vs. stacked autoencoders. For active labeling, a new framework for both stacked RBMs and stacked autoencoders is proposed based on three metrics: least confidence, margin sampling, and entropy. On the MINIST dataset, the methods outperform random labeling consistently by a significant margin. On the other hand, the proposed active labeling methods perform similarly to random labeling on the sleep-stage-recognition dataset due to the noisiness and inconsistency in the data. For the application of deep learning to emotion prediction via physiological sensor data, a software pipeline has been developed. The system first extracts features from the raw data of four channels in an unsupervised fashion and then builds three classifiers to classify the levels of arousal, valence, and liking based on the learned features. The classification accuracy is 0.609, 0.512, and 0.684, respectively, which is comparable with existing methods based on expert designed features.Includes bibliographical references (pages 80-86)

    Non-invasive health prediction from visually observable features [version 2; peer review: 1 approved, 1 approved with reservations]

    Get PDF
    Background: The unprecedented development of Artificial Intelligence has revolutionised the healthcare industry. In the next generation of healthcare systems, self-diagnosis will be pivotal to personalised healthcare services. During the COVID-19 pandemic, new screening and diagnostic approaches like mobile health are well-positioned to reduce disease spread and overcome geographical barriers. This paper presents a non-invasive screening approach to predict the health of a person from visually observable features using machine learning techniques. Images like face and skin surface of the patients are acquired using camera or mobile devices and analysed to derive clinical reasoning and prediction of the person’s health. Methods: In specific, a two-level classification approach is presented. The proposed hierarchical model chooses a class by training a binary classifier at the node of the hierarchy. Prediction is then made using a set of class-specific reduced feature set. Results: Testing accuracies of 86.87% and 76.84% are reported for the first and second-level classification. Empirical results demonstrate that the proposed approach yields favourable prediction results while greatly reduces the computational time. Conclusions: The study suggests that it is possible to predict the health condition of a person based on his/her face appearance using cost-effective machine learning approaches

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included
    corecore