90,255 research outputs found

    The Design and Performance of Cyber-Physical Middleware for Real-Time Hybrid Structural Testing

    Get PDF
    Real-time hybrid testing of civil structures, in which computational models and physical components must be integrated with high fidelity at run-time represents a grand challenge in the emerging area of cyber-physical systems. Actuator dynamics, complex interactions among computers and physical components, and computation and communication delays all must be managed carefully to achieve accurate tests. To address these challenges, we have developed a novel middleware for integrating cyber and physical components flexibly and with suitable timing behavior within a Cyber-physical Instrument for Real-time hybrid Structural Testing (CIRST). This paper makes three main contributions to the state of the art in middleware for cyber-physical systems: (1) a novel middleware architecture within which cyber-physical components can be integrated flexibly through XML-based configuration specifications, (2) an efficient middleware implementation in C++ that can maintain necessary real-time performance, and (3) a case study that evaluates the middleware\u27s performance and demonstrates its suitability for real-time hybrid testing

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities

    A critical review of cyber-physical security for building automation systems

    Full text link
    Modern Building Automation Systems (BASs), as the brain that enables the smartness of a smart building, often require increased connectivity both among system components as well as with outside entities, such as optimized automation via outsourced cloud analytics and increased building-grid integrations. However, increased connectivity and accessibility come with increased cyber security threats. BASs were historically developed as closed environments with limited cyber-security considerations. As a result, BASs in many buildings are vulnerable to cyber-attacks that may cause adverse consequences, such as occupant discomfort, excessive energy usage, and unexpected equipment downtime. Therefore, there is a strong need to advance the state-of-the-art in cyber-physical security for BASs and provide practical solutions for attack mitigation in buildings. However, an inclusive and systematic review of BAS vulnerabilities, potential cyber-attacks with impact assessment, detection & defense approaches, and cyber-secure resilient control strategies is currently lacking in the literature. This review paper fills the gap by providing a comprehensive up-to-date review of cyber-physical security for BASs at three levels in commercial buildings: management level, automation level, and field level. The general BASs vulnerabilities and protocol-specific vulnerabilities for the four dominant BAS protocols are reviewed, followed by a discussion on four attack targets and seven potential attack scenarios. The impact of cyber-attacks on BASs is summarized as signal corruption, signal delaying, and signal blocking. The typical cyber-attack detection and defense approaches are identified at the three levels. Cyber-secure resilient control strategies for BASs under attack are categorized into passive and active resilient control schemes. Open challenges and future opportunities are finally discussed.Comment: 38 pages, 7 figures, 6 tables, submitted to Annual Reviews in Contro

    Digital Twins and the Future of their Use Enabling Shift Left and Shift Right Cybersecurity Operations

    Full text link
    Digital Twins (DTs), optimize operations and monitor performance in Smart Critical Systems (SCS) domains like smart grids and manufacturing. DT-based cybersecurity solutions are in their infancy, lacking a unified strategy to overcome challenges spanning next three to five decades. These challenges include reliable data accessibility from Cyber-Physical Systems (CPS), operating in unpredictable environments. Reliable data sources are pivotal for intelligent cybersecurity operations aided with underlying modeling capabilities across the SCS lifecycle, necessitating a DT. To address these challenges, we propose Security Digital Twins (SDTs) collecting realtime data from CPS, requiring the Shift Left and Shift Right (SLSR) design paradigm for SDT to implement both design time and runtime cybersecurity operations. Incorporating virtual CPS components (VC) in Cloud/Edge, data fusion to SDT models is enabled with high reliability, providing threat insights and enhancing cyber resilience. VC-enabled SDT ensures accurate data feeds for security monitoring for both design and runtime. This design paradigm shift propagates innovative SDT modeling and analytics for securing future critical systems. This vision paper outlines intelligent SDT design through innovative techniques, exploring hybrid intelligence with data-driven and rule-based semantic SDT models. Various operational use cases are discussed for securing smart critical systems through underlying modeling and analytics capabilities.Comment: IEEE Submitted Paper: Trust, Privacy and Security in Intelligent Systems, and Application

    Secure blockchains for cyber-physical systems

    Get PDF
    ā€œBlockchains are a data structure used to perform state agreement in a distributed system across an entire network. One unique trait of blockchains is the lack of a centralized trusted third-party to control the system. This prevents a corrupted trusted third party from being able to control the entire blockchain. All nodes can reach agreement in an untrusted network where nodes do not need to trust one another to believe the accuracy of the information stored. Two main issues occur when trying to apply this technology to other applications: verifiability and scalability. In previous blockchain architectures, there is no way to validate off-chain data i.e. sensor reading. Some have purposed the use of a trusted third-party. Unfortunately, using a trusted third-party undoes a main advantage of blockchains and allows corruption to become a concerning possibility. Other challenges to applying blockchains to cyber-physical systems include keeping a single ledger up-to-date in real-time. The drawbacks of Bitcoin, a popular application of blockchains, have been very well documented in terms of speed. The main purpose of this work is to address the verifiability and scalability issues of blockchains for cyber-physical systems. It proposes a solution that expands the application of blockchains to cyber-physical systems while maintaining the benefits. If the use of blockchains is to be expanded to off-chain data, they need to have the capability to securely encapsulate the physical world in a verifiable way. The following is a list of major contributions by the work: 1) propose a framework for verifying physical transactions in a blockchain, 2) propose a method to increase scalability and allow the use of blockchains in a disconnected network, 3) propose a truncation mechanism for cyber-physical transactions that allow for real-time speed. With these three contributions, this work introduces some additional ideas to blockchains and expands their applicationsā€--Abstract, page iii
    • ā€¦
    corecore