47 research outputs found

    From the hyperbolic 24-cell to the cuboctahedron

    Full text link
    We describe a family of 4-dimensional hyperbolic orbifolds, constructed by deforming an infinite volume orbifold obtained from the ideal, hyperbolic 24-cell by removing two walls. This family provides an infinite number of infinitesimally rigid, infinite covolume, geometrically finite discrete subgroups of the isometry group of hyperbolic 4-space. It also leads to finite covolume Coxeter groups which are the homomorphic image of the group of reflections in the hyperbolic 24-cell. The examples are constructed very explicitly, both from an algebraic and a geometric point of view. The method used can be viewed as a 4-dimensional, but infinite volume, analog of 3-dimensional hyperbolic Dehn filling.Comment: The article has 78 pages and 37 figures. Many of the figures use color in an essential way. If possible, use a color printe

    K-theoretic Tutte polynomials of morphisms of matroids

    Full text link
    We generalize the Tutte polynomial of a matroid to a morphism of matroids via the K-theory of flag varieties. We introduce two different generalizations, and demonstrate that each has its own merits, where the trade-off is between the ease of combinatorics and geometry. One generalization recovers the Las Vergnas Tutte polynomial of a morphism of matroids, which admits a corank-nullity formula and a deletion-contraction recursion. The other generalization does not, but better reflects the geometry of flag varieties.Comment: 27 pages; minor revisions. To appear in JCT

    Associated Primes of Spline Complexes

    Full text link
    The spline complex R/J[Σ]\mathcal{R}/\mathcal{J}[\Sigma] whose top homology is the algebra Cα(Σ)C^\alpha(\Sigma) of mixed splines over the fan Σ⊂Rn+1\Sigma\subset\mathbb{R}^{n+1} was introduced by Schenck-Stillman in [Schenck-Stillman 97] as a variant of a complex R/I[Σ]\mathcal{R}/\mathcal{I}[\Sigma] of Billera [Billera 88]. In this paper we analyze the associated primes of homology modules of this complex. In particular, we show that all such primes are linear. We give two applications to computations of dimensions. The first is a computation of the third coefficient of the Hilbert polynomial of Cα(Σ)C^\alpha(\Sigma), including cases where vanishing is imposed along arbitrary codimension one faces of the boundary of Σ\Sigma, generalizing the computations in [Geramita-Schenck 98,McDonald-Schenck 09]. The second is a description of the fourth coefficient of the Hilbert polynomial of HP(Cα(Σ))HP(C^\alpha(\Sigma)) for simplicial fans Σ\Sigma. We use this to derive the result of Alfeld, Schumaker, and Whiteley on the generic dimension of C1C^1 tetrahedral splines for d≫0d\gg 0 [Alfeld-Schumaker-Whiteley 93] and indicate via an example how this description may be used to give the fourth coefficient in particular nongeneric configurations.Comment: 40 pages, 10 figure

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    Complex Algebraic Geometry

    Get PDF
    The Conference focused on several classical and novel theories in the realm of complex algebraic geometry, such as Algebraic surfaces, Moduli theory, Minimal Model Program, Abelian Varieties, Holomorphic Symplectic Varieties, Homological algebra, Kähler manifolds theory, Holomorphic dynamics, Quantum cohomology

    Toric Topology

    Full text link
    Toric topology emerged in the end of the 1990s on the borders of equivariant topology, algebraic and symplectic geometry, combinatorics and commutative algebra. It has quickly grown up into a very active area with many interdisciplinary links and applications, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a family of manifolds with torus actions defined in combinatorial terms. Their construction links to combinatorial geometry and algebraic geometry of toric varieties via the related notion of a quasitoric manifold. Discovery of remarkable geometric structures on moment-angle manifolds led to seminal connections with the classical and modern areas of symplectic, Lagrangian and non-Kaehler complex geometry. A related categorical construction of moment-angle complexes and their generalisations, polyhedral products, provides a universal framework for many fundamental constructions of homotopical topology. The study of polyhedral products is now evolving into a separate area of homotopy theory, with strong links to other areas of toric topology. A new perspective on torus action has also contributed to the development of classical areas of algebraic topology, such as complex cobordism. The book contains lots of open problems and is addressed to experts interested in new ideas linking all the subjects involved, as well as to graduate students and young researchers ready to enter into a beautiful new area.Comment: Preliminary version. Contains 9 chapters, 5 appendices, bibliography, index. 495 pages. Comments and suggestions are very welcom

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF
    corecore