234 research outputs found

    Multi-latin squares

    Get PDF
    A multi-latin square of order nn and index kk is an n×nn\times n array of multisets, each of cardinality kk, such that each symbol from a fixed set of size nn occurs kk times in each row and kk times in each column. A multi-latin square of index kk is also referred to as a kk-latin square. A 11-latin square is equivalent to a latin square, so a multi-latin square can be thought of as a generalization of a latin square. In this note we show that any partially filled-in kk-latin square of order mm embeds in a kk-latin square of order nn, for each n2mn\geq 2m, thus generalizing Evans' Theorem. Exploiting this result, we show that there exist non-separable kk-latin squares of order nn for each nk+2n\geq k+2. We also show that for each n1n\geq 1, there exists some finite value g(n)g(n) such that for all kg(n)k\geq g(n), every kk-latin square of order nn is separable. We discuss the connection between kk-latin squares and related combinatorial objects such as orthogonal arrays, latin parallelepipeds, semi-latin squares and kk-latin trades. We also enumerate and classify kk-latin squares of small orders.Comment: Final version as sent to journa

    Difference Covering Arrays and Pseudo-Orthogonal Latin Squares

    Get PDF
    Difference arrays are used in applications such as software testing, authentication codes and data compression. Pseudo-orthogonal Latin squares are used in experimental designs. A special class of pseudo-orthogonal Latin squares are the mutually nearly orthogonal Latin squares (MNOLS) first discussed in 2002, with general constructions given in 2007. In this paper we develop row complete MNOLS from difference covering arrays. We will use this connection to settle the spectrum question for sets of 3 mutually pseudo-orthogonal Latin squares of even order, for all but the order 146

    A Pair of Disjoint 3-GDDs of type g^t u^1

    Full text link
    Pairwise disjoint 3-GDDs can be used to construct some optimal constant-weight codes. We study the existence of a pair of disjoint 3-GDDs of type gtu1g^t u^1 and establish that its necessary conditions are also sufficient.Comment: Designs, Codes and Cryptography (to appear

    Decomposition tables for experiments I. A chain of randomizations

    Get PDF
    One aspect of evaluating the design for an experiment is the discovery of the relationships between subspaces of the data space. Initially we establish the notation and methods for evaluating an experiment with a single randomization. Starting with two structures, or orthogonal decompositions of the data space, we describe how to combine them to form the overall decomposition for a single-randomization experiment that is ``structure balanced.'' The relationships between the two structures are characterized using efficiency factors. The decomposition is encapsulated in a decomposition table. Then, for experiments that involve multiple randomizations forming a chain, we take several structures that pairwise are structure balanced and combine them to establish the form of the orthogonal decomposition for the experiment. In particular, it is proven that the properties of the design for such an experiment are derived in a straightforward manner from those of the individual designs. We show how to formulate an extended decomposition table giving the sources of variation, their relationships and their degrees of freedom, so that competing designs can be evaluated.Comment: Published in at http://dx.doi.org/10.1214/09-AOS717 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Mutually orthogonal latin squares with large holes

    Full text link
    Two latin squares are orthogonal if, when they are superimposed, every ordered pair of symbols appears exactly once. This definition extends naturally to `incomplete' latin squares each having a hole on the same rows, columns, and symbols. If an incomplete latin square of order nn has a hole of order mm, then it is an easy observation that n2mn \ge 2m. More generally, if a set of tt incomplete mutually orthogonal latin squares of order nn have a common hole of order mm, then n(t+1)mn \ge (t+1)m. In this article, we prove such sets of incomplete squares exist for all n,m0n,m \gg 0 satisfying n8(t+1)2mn \ge 8(t+1)^2 m

    Decomposition tables for experiments. II. Two--one randomizations

    Get PDF
    We investigate structure for pairs of randomizations that do not follow each other in a chain. These are unrandomized-inclusive, independent, coincident or double randomizations. This involves taking several structures that satisfy particular relations and combining them to form the appropriate orthogonal decomposition of the data space for the experiment. We show how to establish the decomposition table giving the sources of variation, their relationships and their degrees of freedom, so that competing designs can be evaluated. This leads to recommendations for when the different types of multiple randomization should be used.Comment: Published in at http://dx.doi.org/10.1214/09-AOS785 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore