5,557 research outputs found

    Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback

    Full text link
    Machine translation is a natural candidate problem for reinforcement learning from human feedback: users provide quick, dirty ratings on candidate translations to guide a system to improve. Yet, current neural machine translation training focuses on expensive human-generated reference translations. We describe a reinforcement learning algorithm that improves neural machine translation systems from simulated human feedback. Our algorithm combines the advantage actor-critic algorithm (Mnih et al., 2016) with the attention-based neural encoder-decoder architecture (Luong et al., 2015). This algorithm (a) is well-designed for problems with a large action space and delayed rewards, (b) effectively optimizes traditional corpus-level machine translation metrics, and (c) is robust to skewed, high-variance, granular feedback modeled after actual human behaviors.Comment: 11 pages, 5 figures, In Proceedings of Empirical Methods in Natural Language Processing (EMNLP) 201

    A Shared Task on Bandit Learning for Machine Translation

    Full text link
    We introduce and describe the results of a novel shared task on bandit learning for machine translation. The task was organized jointly by Amazon and Heidelberg University for the first time at the Second Conference on Machine Translation (WMT 2017). The goal of the task is to encourage research on learning machine translation from weak user feedback instead of human references or post-edits. On each of a sequence of rounds, a machine translation system is required to propose a translation for an input, and receives a real-valued estimate of the quality of the proposed translation for learning. This paper describes the shared task's learning and evaluation setup, using services hosted on Amazon Web Services (AWS), the data and evaluation metrics, and the results of various machine translation architectures and learning protocols.Comment: Conference on Machine Translation (WMT) 201

    Seamlessly Unifying Attributes and Items: Conversational Recommendation for Cold-Start Users

    Full text link
    Static recommendation methods like collaborative filtering suffer from the inherent limitation of performing real-time personalization for cold-start users. Online recommendation, e.g., multi-armed bandit approach, addresses this limitation by interactively exploring user preference online and pursuing the exploration-exploitation (EE) trade-off. However, existing bandit-based methods model recommendation actions homogeneously. Specifically, they only consider the items as the arms, being incapable of handling the item attributes, which naturally provide interpretable information of user's current demands and can effectively filter out undesired items. In this work, we consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively. This important scenario was studied in a recent work. However, it employs a hand-crafted function to decide when to ask attributes or make recommendations. Such separate modeling of attributes and items makes the effectiveness of the system highly rely on the choice of the hand-crafted function, thus introducing fragility to the system. To address this limitation, we seamlessly unify attributes and items in the same arm space and achieve their EE trade-offs automatically using the framework of Thompson Sampling. Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play. Extensive experiments on three benchmark datasets show that ConTS outperforms the state-of-the-art methods Conversational UCB (ConUCB) and Estimation-Action-Reflection model in both metrics of success rate and average number of conversation turns.Comment: TOIS 202

    Effective Evaluation using Logged Bandit Feedback from Multiple Loggers

    Full text link
    Accurately evaluating new policies (e.g. ad-placement models, ranking functions, recommendation functions) is one of the key prerequisites for improving interactive systems. While the conventional approach to evaluation relies on online A/B tests, recent work has shown that counterfactual estimators can provide an inexpensive and fast alternative, since they can be applied offline using log data that was collected from a different policy fielded in the past. In this paper, we address the question of how to estimate the performance of a new target policy when we have log data from multiple historic policies. This question is of great relevance in practice, since policies get updated frequently in most online systems. We show that naively combining data from multiple logging policies can be highly suboptimal. In particular, we find that the standard Inverse Propensity Score (IPS) estimator suffers especially when logging and target policies diverge -- to a point where throwing away data improves the variance of the estimator. We therefore propose two alternative estimators which we characterize theoretically and compare experimentally. We find that the new estimators can provide substantially improved estimation accuracy.Comment: KDD 201
    corecore