33,213 research outputs found

    A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling

    Get PDF
    Copyright @ Springer Science + Business Media. All rights reserved.The post enrolment course timetabling problem (PECTP) is one type of university course timetabling problems, in which a set of events has to be scheduled in time slots and located in suitable rooms according to the student enrolment data. The PECTP is an NP-hard combinatorial optimisation problem and hence is very difficult to solve to optimality. This paper proposes a hybrid approach to solve the PECTP in two phases. In the first phase, a guided search genetic algorithm is applied to solve the PECTP. This guided search genetic algorithm, integrates a guided search strategy and some local search techniques, where the guided search strategy uses a data structure that stores useful information extracted from previous good individuals to guide the generation of offspring into the population and the local search techniques are used to improve the quality of individuals. In the second phase, a tabu search heuristic is further used on the best solution obtained by the first phase to improve the optimality of the solution if possible. The proposed hybrid approach is tested on a set of benchmark PECTPs taken from the international timetabling competition in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed hybrid approach is able to produce promising results for the test PECTPs.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and Grant EP/E060722/02

    Grammar-based genetic programming for timetabling

    Get PDF

    Genetic algorithms with guided and local search strategies for university course timetabling

    Get PDF
    This article is posted here with permission from the IEEE - Copyright @ 2011 IEEEThe university course timetabling problem (UCTP) is a combinatorial optimization problem, in which a set of events has to be scheduled into time slots and located into suitable rooms. The design of course timetables for academic institutions is a very difficult task because it is an NP-hard problem. This paper investigates genetic algorithms (GAs) with a guided search strategy and local search (LS) techniques for the UCTP. The guided search strategy is used to create offspring into the population based on a data structure that stores information extracted from good individuals of previous generations. The LS techniques use their exploitive search ability to improve the search efficiency of the proposed GAs and the quality of individuals. The proposed GAs are tested on two sets of benchmark problems in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed GAs are able to produce promising results for the UCTP.This work was supported by the Engineering and Physical Sciences Research Council of U.K. under Grant EP/E060722/1

    Timetabling in constraint logic programming

    Get PDF
    In this paper we describe the timetabling problem and its solvability in a Constraint Logic Programming Language. A solution to the problem has been developed and implemented in ECLiPSe, since it deals with finite domains, it has well-defined interfaces between basic building blocks and supports good debugging facilities. The implemented timetable was based on the existing, currently used, timetables at the School of Informatics at out university. It integrates constraints concerning room and period availability

    Cyclic transfers in school timetabling

    Get PDF
    In this paper we propose a neighbourhood structure based on sequential/cyclic moves and a cyclic transfer algorithm for the high school timetabling problem. This method enables execution of complex moves for improving an existing solution, while dealing with the challenge of exploring the neighbourhood efficiently. An improvement graph is used in which certain negative cycles correspond to the neighbours; these cycles are explored using a recursive method. We address the problem of applying large neighbourhood structure methods on problems where the cost function is not exactly the sum of independent cost functions, as it is in the set partitioning problem. For computational experiments we use four real world data sets for high school timetabling in the Netherlands and England.We present results of the cyclic transfer algorithm with different settings on these data sets. The costs decrease by 8–28% if we use the cyclic transfers for local optimization compared to our initial solutions. The quality of the best initial solutions are comparable to the solutions found in practice by timetablers

    Cyclic transfers in school timetabling

    Get PDF
    In this paper we propose a neighbourhood structure based\ud on sequential/cyclic moves and a Cyclic Transfer algorithm for the high school timetabling problem. This method enables execution of complex moves for improving an existing solution, while dealing with the challenge of exploring the neighbourhood efficiently. An improvement graph is used in which certain negative cycles correspond to the neighbours; these cycles are explored using a recursive method. We address the problem of applying large neighbourhood structure methods on problems where the cost function is not exactly the sum of independent cost functions, as it is in the set partitioning problem. For computational experiments we use four real world datasets for high school timetabling in the Netherlands and England. We present results of the cyclic transfer algorithm with different settings on these datasets. The costs decrease by 8% to 28% if we use the cyclic transfers for local optimization compared to our initial solutions. The quality of the best initial solutions are comparable to the solutions found in practice by timetablers

    Developing lifelong learners: A novel online problem‐based ultrasonography subject

    Get PDF
    Online learning environments have a major role in providing lifelong learning opportunities. Lifelong learning is critical for successful participation in today's competitive work environment. This paper describes an online problem‐based learning approach to the creation of a student‐centred learning environment for the study of the biological sciences subject in the Graduate Diploma of Applied Science (Medical Ultrasonography) course at the University of Sydney. The environment is interactive and collaborative, with all communication taking place online. Students work in groups to study clinically relevant problems. A Web‐database system provides learner control in the process of knowledge acquisition, access to reference materials on the Internet and communication with the tutor and with peers through synchronous chat and asynchronous threaded discussion forums. Other online features include a protocol for problem‐solving, self‐assessment and feedback opportunities, detailed help, streaming audio and video and pre‐course, ongoing and post‐course questionnaires. This technology may be adapted to a range of disciplines and can also be utilized in on‐campus teaching

    A memetic algorithm for the university course timetabling problem

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2008 IEEEThe design of course timetables for academic institutions is a very hectic job due to the exponential number of possible feasible timetables with respect to the problem size. This process involves lots of constraints that must be respected and a huge search space to be explored, even if the size of the problem input is not significantly large. On the other hand, the problem itself does not have a widely approved definition, since different institutions face different variations of the problem. This paper presents a memetic algorithm that integrates two local search methods into the genetic algorithm for solving the university course timetabling problem (UCTP). These two local search methods use their exploitive search ability to improve the explorative search ability of genetic algorithms. The experimental results indicate that the proposed memetic algorithm is efficient for solving the UCTP
    • …
    corecore