2,193 research outputs found

    Shape-driven segmentation of the arterial wall in intravascular ultrasound images

    Get PDF
    Segmentation of arterial wall boundaries from intravascular images is an important problem for many applications in the study of plaque characteristics, mechanical properties of the arterial wall, its 3D reconstruction, and its measurements such as lumen size, lumen radius, and wall radius. We present a shape-driven approach to segmentation of the arterial wall from intravascular ultrasound images in the rectangular domain. In a properly built shape space using training data, we constrain the lumen and media-adventitia contours to a smooth, closed geometry, which increases the segmentation quality without any tradeoff with a regularizer term. In addition to a shape prior, we utilize an intensity prior through a non-parametric probability density based image energy, with global image measurements rather than pointwise measurements used in previous methods. Furthermore, a detection step is included to address the challenges introduced to the segmentation process by side branches and calcifications. All these features greatly enhance our segmentation method. The tests of our algorithm on a large dataset demonstrate the effectiveness of our approach

    A new approach for improving coronary plaque component analysis based on intravascular ultrasound images

    Get PDF
    Virtual histology intravascular ultrasound (VH-IVUS) is a clinically available technique for atherosclerosis plaque characterization. It, however, suffers from a poor longitudinal resolution due to electrocardiogram (ECG)-gated acquisition. This article presents an effective algorithm for IVUS image-based histology to overcome this limitation. After plaque area extraction within an input IVUS image, a textural analysis procedure consisting of feature extraction and classification steps is proposed. The pixels of the extracted plaque area excluding the shadow region were classified into one of the three plaque components of fibro-fatty (FF), calcification (CA) or necrotic core (NC) tissues. The average classification accuracy for pixel and region based validations is 75% and 87% respectively. Sensitivities (specificities) were 79% (85%) for CA, 81% (90%) for FF and 52% (82%) for NC. The kappa (kappa) = 0.61 and p value = 0.02 indicate good agreement of the proposed method with VH images. Finally, the enhancement in the longitudinal resolution was evaluated by reconstructing the IVUS images between the two sequential IVUS-VH images

    Manifold learning for image-based gating of intravascular ultrasound(IVUS) pullback sequences

    Get PDF
    Intravascular Ultrasound(IVUS) is an imaging technology which provides cross-sectional images of internal coronary vessel struc- tures. The IVUS frames are acquired by pulling the catheter back with a motor running at a constant speed. However, during the pullback, some artifacts occur due to the beating heart. These artifacts cause inaccu- rate measurements for total vessel and lumen volume and limitation for further processing. Elimination of these artifacts are possible with an ECG (electrocardiogram) signal, which determines the time interval cor- responding to a particular phase of the cardiac cycle. However, using ECG signal requires a special gating unit, which causes loss of impor- tant information about the vessel, and furthermore, ECG gating function may not be available in all clinical systems. To address this problem, we propose an image-based gating technique based on manifold learning. Quantitative tests are performed on 3 different patients, 6 different pull- backs and 24 different vessel cuts. In order to validate our method, the results of our method are compared to those of ECG-Gating method

    Stent implant follow-up in intravascular optical coherence tomography images

    Get PDF
    The objectives of this article are (i) to utilize computer methods in detection of stent struts imaged in vivo by optical coherence tomography (OCT) during percutaneous coronary interventions (PCI); (ii) to provide measurements for the assessment and monitoring of in-stent restenosis by OCT post PCI. Thirty-nine OCT cross-sections from seven pullbacks from seven patients presenting varying degrees of neointimal hyperplasia (NIH) are selected, and stent struts are detected. Stent and lumen boundaries are reconstructed and one experienced observer analyzed the strut detection, the lumen and stent area measurements, as well as the NIH thickness in comparison to manual tracing using the reviewing software provided by the OCT manufacturer (LightLab Imaging, MA, USA). Very good agreements were found between the computer methods and the expert evaluations for lumen cross-section area (mean difference = 0.11 ± 0.70 mm2; r2 = 0.98, P\ 0.0001) and the stent cross-section area (mean difference = 0.10 ± 1.28 mm2; r2 = 0.85, P value\ 0.0001). The average number of detected struts was 10.4 ± 2.9 per crosssection when the expert identified 10.5 ± 2.8 (r2 = 0.78, P value\0.0001). For the given patient dataset: lumen cross-sectional area was on the average (6.05 ± 1.87 mm2), stent cross-sectional area was (6.26 ± 1.63 mm2), maximum angle between struts was on the average (85.96 ± 54.23), maximum, average, and minimum distance between the stent and the lumen were (0.18 ± 0.13 mm), (0.08 ± 0.06 mm), and (0.01 ± 0.02 mm), respectively, and stent eccentricity was (0.80 ± 0.08). Low variability between the expert and automatic method was observed in the computations of the most important parameters assessing the degree of neointimal tissue growth in stents imaged by OCT pullbacks. After further extensive validation, the presented methods might offer a robust automated tool that will improve the evaluation and follow-up monitoring of in-stent restenosis in patients

    Three-dimensional reconstruction of intracoronary ultrasound images. Rationale, approaches, problems, and directions

    Get PDF
    Although intracoronary ultrasonography allows detailed tomographic imaging of the arterial wall, it fails to provide data on the structural architecture and longitudinal extent of arterial disease. This information is essential for decision making during therapeutic interventions. Three-dimensional reconstruction techniques offer visualization of the complex longitudinal architecture of atherosclerotic plaques in composite display. Progress in computer hardware and software technology have shortened the reconstruction process and reduced operator interaction considerably, generating three-dimensional images with delineation of mural anatomy and pathology. The indications for intravascular ultrasonography will grow as the technique offers the uni

    Lumen Border Detection of Intravascular Ultrasound via Denoising of Directional Wavelet Representations

    Get PDF
    In this paper, intravascular ultrasound (IVUS) grayscale images, acquired with a single-element mechanically rotating transducer, are processed with wavelet denoising and region-based segmentation to extract various layers of lumen contours and plaques. First, IVUS volumetric data is expanded on complex exponential wavelet-like basis functions, also known as Brushlets, which are well localized in time and frequency domains. Brushlets denoising have demonstrated in the past a great aptitude for denoising ultrasound data and removal of blood speckles. A region-based segmentation framework is then applied for detection of lumen border layers, which remains one of the most challenging problems in IVUS image analysis for images acquired with a single element, mechanically rotating 45 MHz transducer. We evaluated hard thresholding for Brushlet denoising, and compared segmentation results to manually traced lumen borders. We observed good agreement and suggest that the proposed algorithm has a great potential to be used as a reliable pre-processing step for accurate lumen border detection

    Advanced deep learning methodology for accurate, real-time segmentation of high-resolution intravascular ultrasound images

    Get PDF
    AIMS: The aim of this study is to develop and validate a deep learning (DL) methodology capable of automated and accurate segmentation of intravascular ultrasound (IVUS) image sequences in real-time. METHODS AND RESULTS: IVUS segmentation was performed by two experts who manually annotated the external elastic membrane (EEM) and lumen borders in the end-diastolic frames of 197 IVUS sequences portraying the native coronary arteries of 65 patients. The IVUS sequences of 177 randomly-selected vessels were used to train and optimise a novel DL model for the segmentation of IVUS images. Validation of the developed methodology was performed in 20 vessels using the estimations of two expert analysts as the reference standard. The mean difference for the EEM, lumen and plaque area between the DL-methodology and the analysts was ≤0.23mm2 (standard deviation ≤0.85mm2), while the Hausdorff and mean distance differences for the EEM and lumen borders was ≤0.19 mm (standard deviation≤0.17 mm). The agreement between DL and experts was similar to experts' agreement (Williams Index ranges: 0.754-1.061) with similar results in frames portraying calcific plaques or side branches. CONCLUSIONS: The developed DL-methodology appears accurate and capable of segmenting high-resolution real-world IVUS datasets. These features are expected to facilitate its broad adoption and enhance the applications of IVUS in clinical practice and research
    corecore