250 research outputs found

    Hippocampal volumes in patients with bipolar-schizophrenic spectrum disorders and their unaffected first-degree relatives

    Get PDF
    BACKGROUND: schizophrenic and bipolar disorders are complex and disabling psychiatric diseases whose classical nosography and classification are still under challenging debate aiming to overcome the traditional “Kraepelinian Dichotomy”. For the past hundred years most clinical work and research in psychiatry has proceeded under the assumption that schizophrenia and bipolar disorderaredistinctentities with separate underlying disease processes and treatments. In more recent years there has been increasing evidence for phenomenological, biological and genetic overlap between the two disorders (Potash and Bienvenu 2009). Nowadays, the categorical approach to psychiatric nosography is in contrast with the recent neurobiological, neuropsychological and genetic findings in affective and schizophrenic disorders. Further, symptoms and signs constituting bipolar and schizophrenic disorders are continuously, not dichotomously, distributed; there may be no point of “real cleavage” (Phelps et al. 2008). This recognition has led some clinicians and researchers to call for a diagnostic model that, moving to a “dimensional perspective”, formally recognizes a continuous spectrum from schizophrenic to bipolar (and recurrent depressive) disorders. Kelsoe argued that the existing data coming from various fields of research in bipolar and schizophrenic disorders may best fit a model in which different set of genes predispose to overlapping phenotypes in a continuum. Given the apparent overlap of regions of the genome implicated in bipolar disorder with those for schizophrenia (Kelsoe 1999; Berrettini 2000), the data suggest the possibility that a common polygenic background predisposes to both bipolar disorder and schizophrenia, according to the so-called “multiple threshold model” (Kelsoe 2003). As highlighted by Craddock and Owen, the recent findings are compatible with a model of functional psychosis in which susceptibility to a spectrum of clinical phenotypes is under the influence of overlapping sets of genes, which, together with environmental and epigenetic factors, determine an individual’s expression of illness (Craddock and Owen 2005). A lot of interest is focusing on brain structural abnormalities in patients suffering from schizophrenia and bipolar disorder. A huge amount of neuroimaging studies has been published so far, however the literature is heterogeneous and there is still some degree of uncertainty concerning what key regions are involved in the pathogenesis of such disorders. Schizophrenia and Bipolar Disorder have a number of overlapping symptoms and risk factors, but it is not yet clear if the disorders are characterized by similar deviations in brain morphometry or whether any such deviations reflect the impact of shared susceptibility genes on brain structure. To date there is no consensus about whether, and to what extent, gray matter loss in Schizophrenia is mirrored in Bipolar Disorder and what is the effect of medication or other confounding factors. Studies in family members of patients, who share the risk of the disease but not the confounding factors, may help elucidate whether abnormalities in brain structures are shared by both illnesses. AIM OF THE STUDY: to investigate hippocampal gray matter volume differences in a group of patients with bipolar-schizophrenic spectrum disorders, a group of their unaffected first-degree relatives, and a group of healthy control subjects. METHODS: a total of 104 subjects - 36 schizophrenic or schizoaffective (SZ), 27 bipolar (BP), 2 major depression, 8 unaffected relatives (UR), and 31 healthy controls (HC) - underwent 1,5 T MRI scanning, with volumetric T1 3D acquisition protocol, at the Neuroradiology Unit of Conegliano Hospital. We calculate bilateral hippocampal gray matter volume (HV) and total cerebral volume (TCV) in a sample of 31 SZ, 27 BP, 8 UR and 26 HC, with a stereological method using ANALYZE 10.0 software. RESULTS: we found statistically significant reductions in bilateral HV in the BP-SZ patients compared to HC; the direct comparison between patient groups identified statistically significant reduction in the right HV of SZ, but no significant differences for left HV or TCV (however statistical significance was lost after normalization); statistically significant reduction in the left HV and a trend towards statistical significance for right HV in the UR compared to HC (a trend towards statistically significant reduction in bilateral HV persisted after normalization). CONCLUSION: it might be speculated that the alterations of the gray matter volume in the hippocampus highlighted in our study could be interpreted as a possible structural “biological marker” in the schizophrenic-bipolar spectrum

    Structural neural networks subserving oculomotor function in first-episode schizophrenia

    Get PDF
    BACKGROUND: Smooth pursuit and antisaccade abnormalities are well documented in schizophrenia, but their neuropathological correlates remain unclear. METHODS: In this study, we used statistical parametric mapping to investigate the relationship between oculomotor abnormalities and brain structure in a sample of first-episode schizophrenia patients (n = 27). In addition to conventional volumetric magnetic resonance imaging, we also used magnetization transfer ratio, a technique that allows more precise tissue characterization. RESULTS: We found that smooth pursuit abnormalities were associated with reduced magnetization transfer ratio in several regions, predominantly in the right prefrontal cortex. Antisaccade errors correlated with gray matter volume in the right medial superior frontal cortex as measured by conventional magnetic resonance imaging but not with magnetization transfer ratio. CONCLUSIONS: These preliminary results demonstrate that specific structural abnormalities are associated with abnormal eye movements in schizophrenia

    Quantitative analysis of group-specific brain tissue probability map for schizophrenic patients

    Get PDF
    We developed group-specific tissue probability map (TPM) for gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) on the common spatial coordinates of an averaged brain atlas derived from normal controls (NC) and from schizophrenic patients (SZ). To identify differences in group-specific TPMs, we used quantitative evaluation methods based on differences in probabilistic distribution as a global criterion, and the mean probability and the similarity index (SI) by lobe as regional criteria. The SZ group showed more spatial variation with a lower mean probability than NC subjects. And, for the right temporal and left parietal lobes, the SI between each group was lower than the other lobes. It can be said that there were significant differences in spatial distribution between controls and schizophrenic patients at those areas. In case of female group, although group differences in the volumes of GM and WM were not significant, global difference in the probabilistic distribution of GM was more prominent and the SI was lower and its descent rate was greater in all lobes, compared with the male group. If these morphological differences caused by disease or group-specific features were not considered in TPM, the accuracy and certainty of specific group studies would be greatly reduced. Therefore, suitable TPM is required as a common framework for functional neuroimaging studies and an a priori knowledge of tissue classification

    Morphological correlates to cognitive dysfunction in schizophrenia as studied with Bayesian regression

    Get PDF
    BACKGROUND: Relationships between cognitive deficits and brain morphological changes observed in schizophrenia are alternately explained by less gray matter in the brain cerebral cortex, by alterations in neural circuitry involving the basal ganglia, and by alteration in cerebellar structures and related neural circuitry. This work explored a model encompassing all of these possibilities to identify the strongest morphological relationships to cognitive skill in schizophrenia. METHODS: Seventy-one patients with schizophrenia and sixty-five healthy control subjects were characterized by neuropsychological tests covering six functional domains. Measures of sixteen brain morphological structures were taken using semi-automatic and fully manual tracing of MRI images, with the full set of measures completed on thirty of the patients and twenty controls. Group differences were calculated. A Bayesian decision-theoretic method identified those morphological features, which best explained neuropsychological test scores in the context of a multivariate response linear model with interactions. RESULTS: Patients performed significantly worse on all neuropsychological tests except some regarding executive function. The most prominent morphological observations were enlarged ventricles, reduced posterior superior vermis gray matter volumes, and increased putamen gray matter volumes in the patients. The Bayesian method associated putamen volumes with verbal learning, vigilance, and (to a lesser extent) executive function, while caudate volumes were associated with working memory. Vermis regions were associated with vigilance, executive function, and, less strongly, visuo-motor speed. Ventricular volume was strongly associated with visuo-motor speed, vocabulary, and executive function. Those neuropsychological tests, which were strongly associated to ventricular volume, showed only weak association to diagnosis, possibly because ventricular volume was regarded a proxy for diagnosis. Diagnosis was strongly associated with the other neuropsychological tests, implying that the morphological associations for these tasks reflected morphological effects and not merely group volumetric differences. Interaction effects were rarely associated, indicating that volumetric relationships to neuropsychological performance were similar for both patients and controls. CONCLUSION: The association of subcortical and cerebellar structures to verbal learning, vigilance, and working memory supports the importance of neural connectivity to these functions. The finding that a morphological indicator of diagnosis (ventricular volume) provided more explanatory power than diagnosis itself for visuo-motor speed, vocabulary, and executive function suggests that volumetric abnormalities in the disease are more important for cognition than non-morphological features

    Structural brain imaging in Schizophrenia : contemporary issues

    Get PDF

    Age-related differences in the structural complexity of subcortical and ventricular structures

    Get PDF
    It has been well established that the volume of several subcortical structures decreases in relation to age. Different metrics of cortical structure (e.g., volume, thickness, surface area, and gyrification) have been shown to index distinct characteristics of interindividual differences; thus, it is important to consider the relation of age to multiple structural measures. Here, we compare age-related differences in subcortical and ventricular volume to those differences revealed with a measure of structural complexity, quantified as fractal dimensionality. Across 3 large data sets, totaling nearly 900 individuals across the adult lifespan (aged 18–94 years), we found greater age-related differences in complexity than volume for the subcortical structures, particularly in the caudate and thalamus. The structural complexity of ventricular structures was not more strongly related to age than volume. These results demonstrate that considering shape-related characteristics improves sensitivity to detect age-related differences in subcortical structures

    Neuropathological and Reelin Deficiencies in the Hippocampal Formation of Rats Exposed to MAM; Differences and Similarities with Schizophrenia

    Get PDF
    Adult rats exposed to methylazoxymethanol (MAM) at embryonic day 17 (E17) consistently display behavioral characteristics similar to that observed in patients with schizophrenia and replicate neuropathological findings from the prefrontal cortex of psychotic individuals. However, a systematic neuropathological analysis of the hippocampal formation and the thalamus in these rats is lacking. It is also unclear if reelin, a protein consistently associated with schizophrenia and potentially involved in the mechanism of action of MAM, participates in the neuropathological effects of this compound. Therefore, a thorough assessment including cytoarchitectural and neuromorphometric measurements of eleven brain regions was conducted. Numbers of reelin positive cells and reelin expression and methylation levels were also studied.Compared to untreated rats, MAM-exposed animals showed a reduction in the volume of entorhinal cortex, hippocampus and mediodorsal thalamus associated with decreased neuronal soma. The entorhinal cortex also showed laminar disorganization and neuronal clusters. Reelin methylation in the hippocampus was decreased whereas reelin positive neurons and reelin expression were unchanged.Our results indicate that E17-MAM exposure reproduces findings from the hippocampal formation and the mediodorsal thalamus of patients with schizophrenia while providing little support for reelin's involvement. Moreover, these results strongly suggest MAM-treated animals have a diminished neuropil, which likely arises from abnormal neurite formation; this supports a recently proposed pathophysiological hypothesis for schizophrenia

    Effects of obstetric complications on brain morphology in schizophrenia : four MRI studies

    Get PDF
    Magnetic resonance imaging (MRI) studies have shown the brains of schizophrenia patients to have smaller hippocampi, larger ventricles, and reduced cortical thickness and regional brain volumes, as compared to the brains of mentally healthy subjects. The abnormal brain morphology may reflect subtle deviances from normal brain development. Early adverse somatic events, in the current thesis studied in the form of obstetric complications (OCs), in the pre-, peri-, or postnatal periods can cause or influence a deviant neurodevelopment. In scientific studies, it has been demonstrated that occurrence of OCs increase the risk of schizophrenia. Moreover, results from experimental animal studies demonstrate that different OCs cause both abnormal changes in brain morphology and behaviour that parallel what is observed in schizophrenia. In humans, OCs have been related to smaller hippocampi, larger lateral ventricles, and reduced cortical volume in schizophrenia patients with as compared to patients without a history of OCs. Taken together, these findings suggest that early somatic trauma such as OCs may exert an influence on neurodevelopment, detectable in the brain decades later. The main aim of this PhD thesis was to investigate the relationship between a history of (OCs) and brain morphology in patients with schizophrenia. The subaims were to study 1) if such a putative effect could explain some of the differences in brain morphology observed between schizophrenia patients and healthy controls, and 2) if the effect of OCs on hippocampal volume, if demonstrated, is modified by genetic variation (allele variation in single nucleotide polymorphisms). The subject sample included in the current four studies comprises 54 schizophrenia patients and 54 healthy control subjects. They all underwent clinical examination, genotyping, and MRI scanning at the Karolinska Institutet and Karolinska University Hospital in Stockholm, Sweden. Automated software tools were used to obtain measures of basal ganglia nuclei and hippocampal volumes, cortical thickness, and cortical folding patterns. Information on OCs was independently collected from original birth records. The main findings were that OCs are not associated with basal ganglia volumes (study I) or cortical thickness (study II), but significantly associated with reduced cortical folding in the left pars triangularis (Broca’s area) (study III) and with altered hippocampal volumes (study IV). The effect of OCs on hippocampal volume appeared to be modulated by allele variation in the hypoxia-regulated GRM3 gene (study IV). Furthermore, schizophrenia patients did not differ from healthy control subjects with respect to the rate or severity of OCs per se; the effects of OCs on basal ganglia volumes, cortical thickness, and cortical gyrification; or the gene*OCs interaction effect on hippocampal volume. In conclusion, while some brain structures (cortical thickness, basal ganglia volumes) were unaffected by a history OCs, OCs influenced other aspects of brain morphology (hippocampal volume, cortical folding) in the same way in both patients with schizophrenia and healthy controls. The differences in brain morphology found between schizophrenia patients and healthy controls were not effects of OCs. Genetic variation may modulate the effect of OCs on hippocampal volume
    corecore