200 research outputs found

    Nanoantennas Design for THz Communication: Material Selection and Performance Enhancement

    Full text link
    In the development of terahertz (THz) communication systems, the nanoantenna is the most significant component. Especially, the focus is to design highly directive antennas, because it enhances the performance of the overall system by compensating the large path loss at THz and thus improves the signal-to-noise ratio. This paper presents suitable material for nanoantenna design and the advancement in their performance for THz communications. Copper, Graphene, and carbon nanotube materials are used as promising candidates for nanoantenna design. The performance of nanoantennas is carried out by analyzing the properties and behavior of the material at THz. Results show that the Graphene nanoantenna provides better performance in terms of miniaturization, directivity, and radiation efficiency. Further, the performance enhancement of the nanoantenna at THz is studied by dynamically adjusting the surface conductivity via the chemical potential of Graphene using the electric field effect. The performance of the nanoantenna is enhanced in terms of high miniaturization, high directivity, low reflection, frequency reconfiguration, and stable impedance. The THz nanoantennas using Graphene have the potential to be used for THz communication systems. In view of the smart THz wireless environment; this paper finally presents a THz Hypersurface using Graphene meta-atoms. The user-side Graphene nanoantennas and environment-side Graphene Hypersurface can build a promising smart THz wireless environment

    Static and reconfigurable devices for near-field and far-field terahertz applications

    Get PDF
    The terahertz frequency electromagnetic radiation has gathered a growing interest from the scientific and technological communities in the last 30 years, due to its capability to penetrate common materials, such as paper, fabrics, or some plastics and offer information on a length scale between 100 µm and 1 mm. Moreover, terahertz radiation can be employed for wireless communications, because it is able to sustain terabit-per-second wireless links, opening to the possibility of a new generation of data networks. However, the terahertz band is a challenging range of the electromagnetic spectrum in terms of technological development and it falls amidst the microwave and optical techniques. Even though this so-called “terahertz gap” is progressively narrowing, the demand of efficient terahertz sources and detectors, as well as passive components for the management of terahertz radiation, is still high. In fact, novel strategies are currently under investigation, aiming at improving the performance of terahertz devices and, at the same time, at reducing their structure complexity and fabrication costs. In this PhD work, two classes of devices are studied, one for near-field focusing and one for far-field radiation with high directivity. Some solutions for their practical implementation are presented. The first class encompasses several configurations of diffractive lenses for focusing terahertz radiation. A configuration for a terahertz diffractive lens is proposed, numerically optimized, and experimentally evaluated. It shows a better resolution than a standard configuration. Moreover, this lens is investigated with regard to the possibility to develop terahertz diffractive lenses with a tunable focal length by means of an electro-optical control. Preliminary numerical data present a dual-focus capability at terahertz frequencies. The second class encompasses advanced radiating systems for controlling the far-field radiating features at terahertz frequencies. These are designed by means of the formalism of leaky-wave theory. Specifically, the use of an electro-optical material is considered for the design of a leaky-wave antenna operating in the terahertz range, achieving very promising results in terms of reconfigurability, efficiency, and radiating capabilities. Furthermore, different metasurface topologies are studied. Their analytical and numerical investigation reveals a high directivity in radiating performance. Directions for the fabrication and experimental test at terahertz frequencies of the proposed radiating structures are addressed

    Terahertz Dielectric Resonator Antenna Coupled to Graphene Plasmonic Dipole

    Full text link
    This paper presents an efficient approach for exciting a dielectric resonator antenna (DRA) in the terahertz frequencies by means of a graphene plasmonic dipole. Design and analysis are performed in two steps. First, the propagation properties of hybrid plasmonic onedimensional and two-dimensional structures are obtained by using transfer matrix theory and the finite-element method. The coupling amount between the plasmonic graphene mode and the dielectric wave mode is explored based on different parameters. These results, together with DRA and plasmonic antenna theory, are then used to design a DRA antenna that supports the TEy112TE_{y}^{112} mode at 2.4 THz and achieves a gain (IEEE) of up to 7 dBi and a radiation efficiency of up 70%. This gain is 6.5 dB higher than that of the graphene dipole alone and achieved with a moderate area overhead, demonstrating the value of the proposed structure.Comment: Accepted for presentation at EuCAP 201

    Terahertz Leaky-Wave Antennas Based on Metasurfaces and Tunable Materials

    Get PDF
    Terahertz frequencies are increasingly gaining attention due to the recent efforts made in narrowing the technological gap among microwave and optical components. Still the demand of efficient THz antennas is high, due to the difficulty in obtaining directive patterns and good radiation efficiencies with planar, low-cost, easy-to-fabricate designs. In this regard, leaky-wave antennas have recently been investigated in the THz range, showing very interesting radiating features. Specifically, the combination of the leaky-wave antenna design with the use of metamaterials and metasurfaces seems to offer a promising platform for the development of future THz antenna technologies. In this Chapter, we focus on three different classes of leaky-wave antennas, based on either metasurfaces or tunable materials, namely graphene and nematic liquid crystals. While THz leaky-wave antennas based on homogenized metasurfaces are shown to be able to produce directive patterns with particularly good efficiencies, those based on graphene or nematic liquid crystals are shown to be able to dynamically reconfigure their radiating features. The latter property, although being extremely interesting, is obtained at the expense of an increase of costs and fabrication complexity, as it will emerge from the results of the presented study

    Simulation and optimization of tuneable microstrip patch antenna for fifth-generation applications based on graphene

    Get PDF
    Microstrip patch antennas (MPAs) are known largely for their versatility in terms of feasible geometries, making them applicable in many distinct circumstances. In this paper, a graphene-based tuneable single/array rectangular microstrip patch antenna (MPA) utilizing an inset feed technique designed to function in multiple frequency bands are used in a fifth-generation (5G) wireless communications system. The tuneable antenna is used to eliminate the difficulties caused by the narrow bandwidths typically associated with MPAs. The graphene material has a reconfigurable surface conductivity that can be adjusted to function at the required value, thus allowing the required resonance frequency to be selected. The simulated tuneable antenna comprises a copper radiating patch with four graphene strips used for tuning purposes and is designed to cover a wide frequency band. The proposed antenna can be tuned directly by applying a direct current (DC) voltage to the graphene strips, resulting in a variation in the surface impedance of the graphene strips and leading to shifts in the resonance frequency

    A Novel Transport Based Model for Wire Media and Its Application to Scattering Problems

    Get PDF
    Artificially engineered materials, known as metamaterials, have attracted the interest of researchers because of the potential for novel applications. Effective modeling of metamaterials is a crucial step for analyzing and synthesizing devices. In this thesis, we focus on wire medium (both isotropic and uniaxial) and validate a novel transport based model for them. Scattering problems involving wire media are computationally intensive due to the spatially dispersive nature of homogenized wire media. However, it will be shown that using the new model to solve scattering problems can simplify the calculations a great deal. For scattering problems, an integro-differential equation based on a transport formulation is proposed instead of the convolution-form integral equation that directly comes from spatial dispersion. The integro-differential equation is much faster to solve than the convolution equation form, and its effectiveness is confirmed by solving several examples in one-, two-, and three-dimensions. Both the integro-differential equation formulation and the homogenized wire medium parameters are experimentaly confirmed. To do so, several isotropic connected wire medium spheres have been fabricated using a rapid-prototyping machine, and their measured extinction cross sections are compared with simulation results. Wire parameters (period and diameter) are varied to the point where homogenization theory breaks down, which is observed in the measurements. The same process is done for three-dimensional cubical objects made of a uniaxail wire medium, and their measured results are compared with the numerical results based on the new model. The new method is extremely fast compared to brute-force numerical methods such as FDTD, and provides more physical insight (within the limits of homogenization), including the idea of a Debye length for wire media. The limits of homogenization are examined by comparing homogenization results and measurement. Then, a novel antenna structure is proposed utilizing an Epsilon Near Zero (ENZ) material and the total internal reflection principle. The epsilon near zero material of the antenna is realized by use of a wire medium which acts as an artificial plasma and exhibits ENZ condition at a frequency called the plasma frequency. This will lead us the question of whether or not the ENZ condition is realizable using spatially dispersive materials (e.g. wire medium). To answer this question, the momentum-dependent permittivity for a broad class of natural materials and wire-mesh metamaterials with spatial dispersion is determined in real-space, and a new characteristic length parameter is defined, in addition to the Debye length, which governs polarization screening. It is found that in the presence of spatial dispersion the electric displacement does not vanish at the plasma frequency, in general. However, conditions are investigated under which the permittivity can vanish or be strongly diminished, even in the presence of spatial dispersion, implementing an epsilon-near-zero material. The thesis will end with a chapter about homogenization of graphene. Although it does not completely follow the subject of the thesis, the last chapter shows another example of homogenization applications. In this last chapter, using periodicity and homogenization, a hyperlens is realized for surface plasmons on graphene. In general, such hyperlens cannot be realized without using periodic structures (metamaterials)

    Physical layer solutions for ultra-broadband wireless communications in the terahertz band

    Get PDF
    In recent years, the wireless data traffic grew exponentially, which was further accompanied by an increasing demand for higher data rates. Towards this aim, Terahertz band (0.1-10 THz) communication is envisioned as one of the key wireless technologies of the next decade. The THz band will help to overcome the spectrum scarcity problems and capacity limitations of current wireless networks, by providing an unprecedentedly large bandwidth. In addition, THz band communication will enable a plethora of long-awaited applications ranging from instantaneous massive data transfer among nearby devices in ultra-high-speed wireless personal and local area networks, to ultra-high-definition content streaming over mobile devices in 5G and beyond small cells. The objective of the thesis is to establish the physical layer foundations of the ultra- broadband communication in the THz band. First, a unified multi-path propagation channel is modeled in the THz band, based on ray-tracing techniques. The wideband characterization are analyzed, which include the distance-varying spectral windows, the delay spread, the wideband capacity and the temporal broadening effects. Second, a multi-wideband waveform design for the THz band is proposed to improve the distance and support ultra- high-speed transmissions. Third, two algorithms for timing acquisition in the pulse-based wireless systems are developed, namely the low-sampling-rate (LSR) algorithm, and the maximum likelihood (ML)-based approach. Fourth, the distance-aware bandwidth resource allocation schemes for the single-user and multi-user THz band networks are developed. Fifth, a three-dimensional (3-D) end-to-end model is developed and characterized, which includes the responses of the graphene-based reflectarray antenna and the 3-D multi-path propagation. The provided physical layer analysis in this thesis lays out the foundation for reliable and efficient ultra-high-speed wireless communications in the THz band.Ph.D

    A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems

    Get PDF
    Antennas on-chip are a particular type of radiating elements valued for their small footprint. They are most commonly integrated in circuit boards to electromagnetically interface free space, which is necessary for wireless communications. Antennas on-chip radiate and receive electromagnetic (EM) energy as any conventional antennas, but what distinguishes them is their miniaturized size. This means they can be integrated inside electronic devices. Although on-chip antennas have a limited range, they are suitable for cell phones, tablet computers, headsets, global positioning system (GPS) devices, and WiFi and WLAN routers. Typically, on-chip antennas are handicapped by narrow bandwidth (less than 10%) and low radiation efficiency. This survey provides an overview of recent techniques and technologies investigated in the literature, to implement high performance on-chip antennas for millimeter-waves (mmWave) and terahertz (THz) integrated-circuit (IC) applications. The technologies discussed here include metamaterial (MTM), metasurface (MTS), and substrate integrated waveguides (SIW). The antenna designs described here are implemented on various substrate layers such as Silicon, Graphene, Polyimide, and GaAs to facilitate integration on ICs. Some of the antennas described here employ innovative excitation mechanisms, for example comprising open-circuited microstrip-line that is electromagnetically coupled to radiating elements through narrow dielectric slots. This excitation mechanism is shown to suppress surface wave propagation and reduce substrate loss. Other techniques described like SIW are shown to significantly attenuate surface waves and minimise loss. Radiation elements based on the MTM and MTS inspired technologies are shown to extend the effective aperture of the antenna without compromising the antenna’s form factor. Moreover, the on-chip antennas designed using the above technologies exhibit significantly improved impedance match, bandwidth, gain and radiation efficiency compared to previously used technologies. These features make such antennas a prime candidate for mmWave and THz on-chip integration. This review provides a thorough reference source for specialist antenna designers.This work was supported in part by the Universidad Carlos III de Madrid and the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant 801538, in part by the Icelandic Centre for Research (RANNIS) under Grant 206606, and in part by the National Science Centre of Poland under Grant 2018/31/B/ST7/02369

    Characterization of multi-wall carbon nanotubes and their applications

    Get PDF
    PhDCarbon nanotubes (CNT) and their applications is a field which has attract a lot of interest in the past two decades. Since the first invention of CNTs in 1991, and in view of utilising nanoantennas, the focus in many laboratories around the world has shifted to trying to lengthen nanotubes longer from nanometers to few centimeters. Eventually this could lead to CNTs’ use in sub-millimeter, millimiter wave and microwave antenna applications. In this thesis, fundamental properties of carbon nanotube films are investigated, and some applications such as the use of CNTs as absorbers or CNT doped liquid crystals are considered. The concept of frequency tunable patch antennas is also presented. Simulation and measurement results of the liquid crystal based antenna show that frequency tuning is possible, through the use of a liquid crystal cell as a substrate. Additionally, greater tuning can be achieved using liquid crystals with higher dielectric anisotropy at microwave frequencies. This can be achieved by using CNT doped liquid crystals. As mentioned, microwave and terahertz measurements of vertically aligned carbon nanotube arrays placed on the top surface of a rectangular silicon substrate are presented. The S-parameters are calculated allowing the extraction of the complex permittivity, permeability and conductivity of the samples. Theoretical models are being introduced delineating the behaviour of the multi-walled nanotube (MWNT) samples. The material properties of this film provide useful data for potential microwave and terahertz applications such as absorbers. Finally, finite-difference time-domain (FDTD) modelling of CNTs is introduced, verifying the measurements that have been performed, confirming that CNT arrays can be highly absorptive. A novel estimation of the permittivity and permeability of an individual carbon nanotube is presented and a periodic structure is simulated, under periodic boundary conditions, consisting of solid anisotropic cylinders. In addition, the optical properties of vertically aligned carbon nanotube (VACNT) arrays, when the periodicity is both within the sub-wavelength and wavelength iii regime are calculated. The effect of geometrical parameters of the tube such as length, diameter and inter-tube distance between two consecutive tubes are also examined

    Nanodevices for Microwave and Millimeter Wave Applications

    Get PDF
    The microwave and millimeter wave frequency range is nowadays widely exploited in a large variety of fields including (wireless) communications, security, radar, spectroscopy, but also astronomy and biomedical, to name a few. This Special Issue focuses on the interaction between the nanoscale dimensions and centimeter to millimeter wavelengths. This interaction has been proven to be efficient for the design and fabrication of devices showing enhanced performance. Novel contributions are welcome in the field of devices based on nanoscaled geometries and materials. Applications cover, but not are limited to, electronics, sensors, signal processing, imaging and metrology, all exploiting nanoscale/nanotechnology at microwave and millimeter waves. Contributions can take the form of short communications, regular or review papers
    • …
    corecore