182,787 research outputs found

    An Empirical Study of Pre-Trained Model Reuse in the Hugging Face Deep Learning Model Registry

    Get PDF
    Deep Neural Networks (DNNs) are being adopted as components in software systems. Creating and specializing DNNs from scratch has grown increasingly difficult as state-of-the-art architectures grow more complex. Following the path of traditional software engineering, machine learning engineers have begun to reuse large-scale pre-trained models (PTMs) and fine-tune these models for downstream tasks. Prior works have studied reuse practices for traditional software packages to guide software engineers towards better package maintenance and dependency management. We lack a similar foundation of knowledge to guide behaviors in pre-trained model ecosystems. In this work, we present the first empirical investigation of PTM reuse. We interviewed 12 practitioners from the most popular PTM ecosystem, Hugging Face, to learn the practices and challenges of PTM reuse. From this data, we model the decision-making process for PTM reuse. Based on the identified practices, we describe useful attributes for model reuse, including provenance, reproducibility, and portability. Three challenges for PTM reuse are missing attributes, discrepancies between claimed and actual performance, and model risks. We substantiate these identified challenges with systematic measurements in the Hugging Face ecosystem. Our work informs future directions on optimizing deep learning ecosystems by automated measuring useful attributes and potential attacks, and envision future research on infrastructure and standardization for model registries

    Database forensic investigation process models: a review

    Get PDF
    Database Forensic Investigation (DBFI) involves the identification, collection, preservation, reconstruction, analysis, and reporting of database incidents. However, it is a heterogeneous, complex, and ambiguous field due to the variety and multidimensional nature of database systems. A small number of DBFI process models have been proposed to solve specific database scenarios using different investigation processes, concepts, activities, and tasks as surveyed in this paper. Specifically, we reviewed 40 proposed DBFI process models for RDBMS in the literature to offer up- to-date and comprehensive background knowledge on existing DBFI process model research, their associated challenges, issues for newcomers, and potential solutions for addressing such issues. This paper highlights three common limitations of the DBFI domain, which are: 1) redundant and irrelevant investigation processes; 2) redundant and irrelevant investigation concepts and terminologies; and 3) a lack of unified models to manage, share, and reuse DBFI knowledge. Also, this paper suggests three solutions for the discovered limitations, which are: 1) propose generic DBFI process/model for the DBFI field; 2) develop a semantic metamodeling language to structure, manage, organize, share, and reuse DBFI knowledge; and 3) develop a repository to store and retrieve DBFI field knowledge

    Outcome evaluation of research for development work conducted in Ghana and Sri Lanka under the Resource, Recovery and Reuse (RRR) subprogram of the CGIAR Research Program on Water, Land and Ecosystems (WLE).

    Get PDF
    This is the main report of an external evaluation of the Resource Recovery and Reuse Flagship of the Water Land and Ecosystems (WLE) CGIAR Research Program. WLE commissioned the study. The Evaluators interviewed researchers and partners in two countries, Ghana and Sri Lanka, and in Ghana visited two sites. They also interviewed key international partners and analyzed a wide range of documents, reports and publications. The evaluation was focused on understanding how and in what ways the research and other activities carried out by IWMI and supported by WLE contributed to the outcomes. In essence, the purpose was to understand the specific impact pathways from research to outputs and outcomes

    Advances in semantic representation for multiscale biosimulation: a case study in merging models

    Get PDF
    As a case-study of biosimulation model integration, we describe our experiences applying the SemSim methodology to integrate independently-developed, multiscale models of cardiac circulation. In particular, we have integrated the CircAdapt model (written by T. Arts for MATLAB) of an adapting vascular segment with a cardiovascular system model (written by M. Neal for JSim). We report on three results from the model integration experience. First, models should be explicit about simulations that occur on different time scales. Second, data structures and naming conventions used to represent model variables may not translate across simulation languages. Finally, identifying the dependencies among model variables is a non-trivial task. We claim that these challenges will appear whenever researchers attempt to integrate models from others, especially when those models are written in a procedural style (using MATLAB, Fortran, etc.) rather than a declarative format (as supported by languages like SBML, CellML or JSim’s MML)

    Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices

    Full text link
    A recent trend in DNN development is to extend the reach of deep learning applications to platforms that are more resource and energy constrained, e.g., mobile devices. These endeavors aim to reduce the DNN model size and improve the hardware processing efficiency, and have resulted in DNNs that are much more compact in their structures and/or have high data sparsity. These compact or sparse models are different from the traditional large ones in that there is much more variation in their layer shapes and sizes, and often require specialized hardware to exploit sparsity for performance improvement. Thus, many DNN accelerators designed for large DNNs do not perform well on these models. In this work, we present Eyeriss v2, a DNN accelerator architecture designed for running compact and sparse DNNs. To deal with the widely varying layer shapes and sizes, it introduces a highly flexible on-chip network, called hierarchical mesh, that can adapt to the different amounts of data reuse and bandwidth requirements of different data types, which improves the utilization of the computation resources. Furthermore, Eyeriss v2 can process sparse data directly in the compressed domain for both weights and activations, and therefore is able to improve both processing speed and energy efficiency with sparse models. Overall, with sparse MobileNet, Eyeriss v2 in a 65nm CMOS process achieves a throughput of 1470.6 inferences/sec and 2560.3 inferences/J at a batch size of 1, which is 12.6x faster and 2.5x more energy efficient than the original Eyeriss running MobileNet. We also present an analysis methodology called Eyexam that provides a systematic way of understanding the performance limits for DNN processors as a function of specific characteristics of the DNN model and accelerator design; it applies these characteristics as sequential steps to increasingly tighten the bound on the performance limits.Comment: accepted for publication in IEEE Journal on Emerging and Selected Topics in Circuits and Systems. This extended version on arXiv also includes Eyexam in the appendi
    corecore