586 research outputs found

    Threat Image Projection (TIP) into X-ray images of cargo containers for training humans and machines

    Get PDF
    We propose a framework for Threat Image Projection (TIP) in cargo transmission X-ray imagery. The method exploits the approximately multiplicative nature of X-ray imagery to extract a library of threat items. These items can then be projected into real cargo. We show using experimental data that there is no significant qualitative or quantitative difference between real threat images and TIP images. We also describe methods for adding realistic variation to TIP images in order to robustify Machine Learning (ML) based algorithms trained on TIP. These variations are derived from cargo X-ray image formation, and include: (i) translations; (ii) magnification; (iii) rotations; (iv) noise; (v) illumination; (vi) volume and density; and (vii) obscuration. These methods are particularly relevant for representation learning, since it allows the system to learn features that are invariant to these variations. The framework also allows efficient addition of new or emerging threats to a detection system, which is important if time is critical. We have applied the framework to training ML-based cargo algorithms for (i) detection of loads (empty verification), (ii) detection of concealed cars (ii) detection of Small Metallic Threats (SMTs). TIP also enables algorithm testing under controlled conditions, allowing one to gain a deeper understanding of performance. Whilst we have focused on robustifying ML-based threat detectors, our TIP method can also be used to train and robustify human threat detectors as is done in cabin baggage screening

    Automated X-ray image analysis for cargo security: Critical review and future promise

    Get PDF
    We review the relatively immature field of automated image analysis for X-ray cargo imagery. There is increasing demand for automated analysis methods that can assist in the inspection and selection of containers, due to the ever-growing volumes of traded cargo and the increasing concerns that customs- and security-related threats are being smuggled across borders by organised crime and terrorist networks. We split the field into the classical pipeline of image preprocessing and image understanding. Preprocessing includes: image manipulation; quality improvement; Threat Image Projection (TIP); and material discrimination and segmentation. Image understanding includes: Automated Threat Detection (ATD); and Automated Contents Verification (ACV). We identify several gaps in the literature that need to be addressed and propose ideas for future research. Where the current literature is sparse we borrow from the single-view, multi-view, and CT X-ray baggage domains, which have some characteristics in common with X-ray cargo

    Automated Analysis of X-ray Images for Cargo Security

    Get PDF
    Customs and border officers are overwhelmed by the hundreds of millions of cargo containers that constitute the backbone of the global supply chain, any one of which could contain a security- or customs-related threat. Searching for these threats is akin to searching for needles in an ever-growing field of haystacks. This thesis considers novel automated image analysis methods to automate or assist elements of cargo inspection. The four main contributions of this thesis are as follows. Methods are proposed for the measurement and correction of detector wobble in large-scale transmission radiography using Beam Position Detectors (BPDs). Wobble is estimated from BPD measurements using a Random Regression Forest (RRF) model, Bayesian fused with a prior estimate from an Auto-Regression (AR). Next, a series of image corrections are derived, and it is shown that 87% of image error due to wobble can be corrected. This is the first proposed method for correction of wobble in large-scale transmission radiography. A Threat Image Projection (TIP) framework is proposed, for training, probing and evaluating Automated Threat Detection (ATD) algorithms. The TIP method is validated experimentally, and a method is proposed to test whether algorithms can learn to exploit TIP artefacts. A system for Empty Container Verification (ECV) is proposed. The system, trained using TIP, is based on Random Forest (RF) classification of image patches according to fixed geometric features and container location. The method outperforms previous reported results, and is able to detect very small amounts of synthetically concealed smuggled contraband. Finally, a method for ATD is proposed, based on a deep Convolutional Neural Network (CNN), trained from scratch using TIP, and exploits the material information encoded within dual-energy X-ray images to suppress false alarms. The system offers a 100-fold improvement in the false positive rate over prior work

    Transferring X-ray based automated threat detection between scanners with different energies and resolution

    Get PDF
    A significant obstacle to developing high performance Deep Learning algorithms for Automated Threat Detection (ATD) in security X-ray imagery, is the difficulty of obtaining large training datasets. In our previous work, we circumvented this problem for ATD in cargo containers, using Threat Image Projection and data augmentation. In this work, we investigate whether data scarcity for other modalities, such as parcels and baggage, can be ameliorated by transforming data from one domain so that it approximates the appearance of another. We present an ontology of ATD datasets to assess where transfer learning may be applied. We define frameworks for transfer at the training and testing stages, and compare the results for both methods against ATD where a common data source is used for training and testing. Our results show very poor transfer, which we attribute to the difficulty of accurately matching the blur and contrast characteristics of different scanners

    Towards Real-Time Anomaly Detection within X-ray Security Imagery: Self-Supervised Adversarial Training Approach

    Get PDF
    Automatic threat detection is an increasingly important area in X-ray security imaging since it is critical to aid screening operators to identify concealed threats. Due to the cluttered and occluded nature of X-ray baggage imagery and limited dataset availability, few studies in the literature have systematically evaluated the automated X-ray security screening. This thesis provides an exhaustive evaluation of the use of deep Convolutional Neural Networks (CNN) for the image classification and detection problems posed within the field. The use of transfer learning overcomes the limited availability of the object of interest data examples. A thorough evaluation reveals the superiority of the CNN features over conventional hand-crafted features. Further experimentation also demonstrates the capability of the supervised deep object detection techniques as object localization strategies within cluttered X-ray security imagery. By addressing the limitations of the current X-ray datasets such as annotation and class-imbalance, the thesis subsequently transitions the scope to- wards deep unsupervised techniques for the detection of anomalies based on the training on normal (benign) X-ray samples only. The proposed anomaly detection models within the thesis employ a conditional encoder-decoder generative adversarial network that jointly learns the generation of high-dimensional image space and the inference of latent space — minimizing the distance between these images and the latent vectors during training aids in learning the data distribution for the normal samples. As a result, a larger distance metric from this learned data distribution at inference time is indicative of an outlier from that distribution — an anomaly. Experimentation over several benchmark datasets, from varying domains, shows the model efficacy and superiority over previous state-of-the-art approaches. Based on the current approaches and open problems in deep learning, the thesis finally provides discussion and future directions for X-ray security imagery

    Microwave imaging for security applications

    Get PDF
    Microwave imaging technologies have been widely researched in the biomedical field where they rely on the imaging of dielectric properties of tissues. Healthy and malignant tissue have different dielectric properties in the microwave frequency region, therefore, the dielectric properties of a human body’s tissues are generally different from other contraband materials. Consequently, dielectric data analysis techniques using microwave signals can be used to distinguish between different types of materials that could be hidden in the human body, such as explosives or drugs. Other concerns raised about these particular imaging systems were how to build them cost effectively, with less radiation emissions, and to overcome the disadvantages of X-ray imaging systems. The key challenge in security applications using microwave imaging is the image reconstruction methods adopted in order to gain a clear image of illuminated objects inside the human body or underneath clothing. This thesis will discuss in detail how microwave tomography scanning could overcome the challenge of imaging objects concealed in the human body, and prove the concept of imaging inside a human body using image reconstruction algorithms such as Radon transformation image reconstruction. Also, this thesis presents subspace based TR-MUSIC algorithms for point targets and extended targets. The algorithm is based on the collection of the dominant response matrix reflected by targets at the transducers in homogenous backgrounds, and uses the MUSIC function to image it. Lumerical FDTD solution is used to model the transducers and the objects to process its response matrix data in Matlab. Clear images of metal dielectric properties have been clearly detected. Security management understanding in airports is also discussed to use new scanning technologies such as microwave imaging in the future.The main contribution of this reseach is that microwave was proved to be able to image and detect illegal objects embedded or implanted inside human body

    Explosive Detection Equipment and Technology for Border Security

    Get PDF
    This report contains a brief survey of Explosives Detection Technology,as it is applied for inspection of goods and passengers at borders, and explains the role of European legislation and the European CommissionÂżs research programs in this field. It describes the techniques of trace and bulk explosives detection that are in use, the latest techniques that are in development and the characteristics of explosives that are, or might be, used to provide a signature for exploitation in detection technology. References to academic reviews are included for those wishing to study the subject in greater depth. Some additional details are given concerning plastic and liquid explosives, which are a threat of particular current importance. The report also contains a brief account of relevant European trade, safety and security legislation, a description of recent policy initiatives and tables of related European Commission funded research projects. Contact details of commercial companies selling explosive detection products are also provided.JRC.G.6-Sensors, radar technologies and cybersecurit

    Developing integrated data fusion algorithms for a portable cargo screening detection system

    Get PDF
    Towards having a one size fits all solution to cocaine detection at borders; this thesis proposes a systematic cocaine detection methodology that can use raw data output from a fibre optic sensor to produce a set of unique features whose decisions can be combined to lead to reliable output. This multidisciplinary research makes use of real data sourced from cocaine analyte detecting fibre optic sensor developed by one of the collaborators - City University, London. This research advocates a two-step approach: For the first step, the raw sensor data are collected and stored. Level one fusion i.e. analyses, pre-processing and feature extraction is performed at this stage. In step two, using experimentally pre-determined thresholds, each feature decides on detection of cocaine or otherwise with a corresponding posterior probability. High level sensor fusion is then performed on this output locally to combine these decisions and their probabilities at time intervals. Output from every time interval is stored in the database and used as prior data for the next time interval. The final output is a decision on detection of cocaine. The key contributions of this thesis includes investigating the use of data fusion techniques as a solution for overcoming challenges in the real time detection of cocaine using fibre optic sensor technology together with an innovative user interface design. A generalizable sensor fusion architecture is suggested and implemented using the Bayesian and Dempster-Shafer techniques. The results from implemented experiments show great promise with this architecture especially in overcoming sensor limitations. A 5-fold cross validation system using a 12 13 - 1 Neural Network was used in validating the feature selection process. This validation step yielded 89.5% and 10.5% true positive and false alarm rates with 0.8 correlation coefficient. Using the Bayesian Technique, it is possible to achieve 100% detection whilst the Dempster Shafer technique achieves a 95% detection using the same features as inputs to the DF system

    Global Shipping Container Monitoring Using Machine Learning with Multi-Sensor Hubs and Catadioptric Imaging

    Get PDF
    We describe a framework for global shipping container monitoring using machine learning with multi-sensor hubs and infrared catadioptric imaging. A wireless mesh radio satellite tag architecture provides connectivity anywhere in the world which is a significant improvement to legacy methods. We discuss the design and testing of a low-cost long-wave infrared catadioptric imaging device and multi-sensor hub combination as an intelligent edge computing system that, when equipped with physics-based machine learning algorithms, can interpret the scene inside a shipping container to make efficient use of expensive communications bandwidth. The histogram of oriented gradients and T-channel (HOG+) feature as introduced for human detection on low-resolution infrared catadioptric images is shown to be effective for various mirror shapes designed to give wide volume coverage with controlled distortion. Initial results for through-metal communication with ultrasonic guided waves show promise using the Dynamic Wavelet Fingerprint Technique (DWFT) to identify Lamb waves in a complicated ultrasonic signal
    • …
    corecore