39,547 research outputs found

    Web-Based Tsunami Early Warning System

    Get PDF
    Tsunami is a serious threat to the island nation such as Indonesia. The tsunami disasters that were occurred in some parts of Indonesia have immerged the need for tsunami early warning system that is reliable and can be applied to the Indonesian archipelago. North Sulawesi is one of the areas prone to tsunamis since this area lies in the path called the ring of fire's. This article describes a tsunami simulation application for the north coast of North Sulawesi. Web-based applications were built so that they can be monitored online from anywhere and at anytime. This system reads the real-time seismic data that affect the North Sulawesi region from a number of sources. Dynamic and static data that are received are processed using data mining method to predict the chances of a tsunami, while flood flooding algorithm is used to visualize the map of affected areas of North Sulawesi. The resulting information is available in detail in the form of web pages and also through short message to the relevant authorities handling of the tsunami disaster in order for them to act in accordance with applicable standard operating procedures. With this application, the public can obtain information that is more accurate. Relevant authorities can conduct tsunami disaster mitigation measures more effectively

    Searching for patterns in political event sequences: Experiments with the KEDs database

    Get PDF
    This paper presents an empirical study on the possibility of discovering interesting event sequences and sequential rules in a large database of international political events. A data mining algorithm first presented by Mannila and Toivonen (1996), has been implemented and extended, which is able to search for generalized episodes in such event databases. Experiments conducted with this algorithm on the Kansas Event Data System (KEDS) database, an event data set covering interactions between countries in the Persian Gulf region, are described. Some qualitative and quantitative results are reported, and experiences with strategies for reducing the problem complexity and focusing on the search on interesting subsets of events are described

    The detection and tracking of mine-water pollution from abandoned mines using electrical tomography

    Get PDF
    Increasing emphasis is being placed on the environmental and societal impact of mining, particularly in the EU, where the environmental impacts of abandoned mine sites (spoil heaps and tailings) are now subject to the legally binding Water Framework and Mine Waste Directives. Traditional sampling to monitor the impact of mining on surface waters and groundwater is laborious, expensive and often unrepresentative. In particular, sparse and infrequent borehole sampling may fail to capture the dynamic behaviour associated with important events such as flash flooding, mine-water break-out, and subsurface acid mine drainage. Current monitoring practice is therefore failing to provide the information needed to assess the socio-economic and environmental impact of mining on vulnerable eco-systems, or to give adequate early warning to allow preventative maintenance or containment. BGS has developed a tomographic imaging system known as ALERT ( Automated time-Lapse Electrical Resistivity Tomography) which allows the near real-time measurement of geoelectric properties "on demand", thereby giving early warning of potential threats to vulnerable water systems. Permanent in-situ geoelectric measurements are used to provide surrogate indicators of hydrochemical and hydrogeological properties. The ALERT survey concept uses electrode arrays, permanently buried in shallow trenches at the surface but these arrays could equally be deployed in mine entries or shafts or underground workings. This sensor network is then interrogated from the office by wireless telemetry (e.g: GSM, low-power radio, internet, and satellite) to provide volumetric images of the subsurface at regular intervals. Once installed, no manual intervention is required; data is transmitted automatically according to a pre-programmed schedule and for specific survey parameters, both of which may be varied remotely as conditions change (i.e: an adaptive sampling approach). The entire process from data capture to visualisation on the web-portal is seamless, with no manual intervention. Examples are given where ALERT has been installed and used to remotely monitor (i) seawater intrusion in a coastal aquifer (ii) domestic landfills and contaminated land and (iii) vulnerable earth embankments. The full potential of the ALERT concept for monitoring mine-waste has yet to be demonstrated. However we have used manual electrical tomography surveys to characterise mine-waste pollution at an abandoned metalliferous mine in the Central Wales orefield in the UK. Hydrogeochemical sampling confirms that electrical tomography can provide a reliable surrogate for the mapping and long-term monitoring of mine-water pollution

    Weak signal identification with semantic web mining

    Get PDF
    We investigate an automated identification of weak signals according to Ansoff to improve strategic planning and technological forecasting. Literature shows that weak signals can be found in the organization's environment and that they appear in different contexts. We use internet information to represent organization's environment and we select these websites that are related to a given hypothesis. In contrast to related research, a methodology is provided that uses latent semantic indexing (LSI) for the identification of weak signals. This improves existing knowledge based approaches because LSI considers the aspects of meaning and thus, it is able to identify similar textual patterns in different contexts. A new weak signal maximization approach is introduced that replaces the commonly used prediction modeling approach in LSI. It enables to calculate the largest number of relevant weak signals represented by singular value decomposition (SVD) dimensions. A case study identifies and analyses weak signals to predict trends in the field of on-site medical oxygen production. This supports the planning of research and development (R&D) for a medical oxygen supplier. As a result, it is shown that the proposed methodology enables organizations to identify weak signals from the internet for a given hypothesis. This helps strategic planners to react ahead of time
    • 

    corecore