260 research outputs found

    Improving decision tree and neural network learning for evolving data-streams

    Get PDF
    High-throughput real-time Big Data stream processing requires fast incremental algorithms that keep models consistent with most recent data. In this scenario, Hoeffding Trees are considered the state-of-the-art single classifier for processing data streams and they are widely used in ensemble combinations. This thesis is devoted to the improvement of the performance of algorithms for machine learning/artificial intelligence on evolving data streams. In particular, we focus on improving the Hoeffding Tree classifier and its ensemble combinations, in order to reduce its resource consumption and its response time latency, achieving better throughput when processing evolving data streams. First, this thesis presents a study on using Neural Networks (NN) as an alternative method for processing data streams. The use of random features for improving NNs training speed is proposed and important issues are highlighted about the use of NN on a data stream setup. These issues motivated this thesis to go in the direction of improving the current state-of-the-art methods: Hoeffding Trees and their ensemble combinations. Second, this thesis proposes the Echo State Hoeffding Tree (ESHT), as an extension of the Hoeffding Tree to model time-dependencies typically present in data streams. The capabilities of the new proposed architecture on both regression and classification problems are evaluated. Third, a new methodology to improve the Adaptive Random Forest (ARF) is developed. ARF has been introduced recently, and it is considered the state-of-the-art classifier in the MOA framework (a popular framework for processing evolving data streams). This thesis proposes the Elastic Swap Random Forest, an extension to ARF that reduces the number of base learners in the ensemble down to one third on average, while providing similar accuracy than the standard ARF with 100 trees. And finally, a last contribution on a multi-threaded high performance scalable ensemble design that is highly adaptable to a variety of hardware platforms, ranging from server-class to edge computing. The proposed design achieves throughput improvements of 85x (Intel i7), 143x (Intel Xeon parsing from memory), 10x (Jetson TX1, ARM) and 23x (X-Gene2, ARM) compared to single-threaded MOA on i7. In addition, the proposal achieves 75% parallel efficiency when using 24 cores on the Intel Xeon.Procesar grandes flujos de datos (Big Data Streams, BDS) en tiempo real requiere el uso de algoritmos incrementales rápidos que mantengan los modelos consistentes con los datos más recientes. En este escenario, los Hoeffding Trees (HT) se consideran el clasificador simple más avanzado para procesar BDS, razon por la cual son ampliamente usados como base a la hora de combinar clasificadores en Ensembles. Esta tesis está dedicada a la mejora del rendimiento de algoritmos para Machine Learning/Iteligencia Artificial en BDS que evolucionan con el tiempo (es decir, BDS cuya distribución estadística cambia con el tiempo). En particular, nuestro objetivo es mejorar el Hoeffding Tree y sus combinaciones en Ensembles, con el objetivo de reducir el consumo de recursos y la latencia en el tiempo de respuesta, logrando un mejor rendimiento al procesar BDS que evolucionan en el tiempo. Primero, se presenta un estudio sobre el uso de redes neuronales (NN) con parámetros aleatorios como un método alternativo para procesar BDS con el objetivo de mejorar la velocidad de entrenamiento de Nns. También se destacan problemas importantes derivados del uso de NN para BDS. Como consecuencia, esta tesis tomo la dirección de mejorar los métodos de vanguardia en BDS: Hoeffding Trees y sus combinaciones en Ensembles. Segundo, se propone el Echo State Hoeffding Tree (ESHT), como una extensión del HT para modelar las dependencias temporales típicamente presentes en BDS. La nueva arquitectura propuesta se evalúa tanto en problemas de regresión como de clasificación. Tercero, se propone una extensión para el Adaptive Random Forest (ARF), publicado recientemente y considerado como el clasificador mas potente implementado en MOA (un framework muy popular para procesar BDS). Proponemos el Elastic Swap Random Forest para reducir el número de clasificadores en el ensemble a un tercio en promedio, al tiempo se mantiene un accuracy similar a la de un ARF estándar con 100 árboles. Finalmente, la última contribución de esta tesis es una arquitectura de Ensembles multi hilo para procesar BDS. Nuestro diseño es altamente adaptable a una variedad de plataformas de hardware, que van desde servidores hasta pequeños dispositivos en el Edge Computing (pej, Internet de las Cosas). El diseño propuesto logra mejoras de rendimiento de 85x (Intel i7), 143x (análisis de Intel Xeon desde la memoria), 10x (Jetson TX1, ARM) y 23x (X-Gene2, ARM) en comparación con MOA (un solo proceso) en un Intel i7. Además, la propuesta logra una eficiencia paralela del 75 \% cuando se usan 24 núcleos en el Intel Xeon.Postprint (published version

    Scalable Hardware Efficient Deep Spatio-Temporal Inference Networks

    Get PDF
    Deep machine learning (DML) is a promising field of research that has enjoyed much success in recent years. Two of the predominant deep learning architectures studied in the literature are Convolutional Neural Networks (CNNs) and Deep Belief Networks (DBNs). Both have been successfully applied to many standard benchmarks with a primary focus on machine vision and speech processing domains. Many real-world applications involve time-varying signals and, consequently, necessitate models that efficiently represent both temporal and spatial attributes. However, neither DBNs nor CNNs are designed to naturally capture temporal dependencies in observed data, often resulting in the inadequate transformation of spatio-temporal signals into wide spatial structures. It is argued that deep machine learning without proper temporal representation mechanisms is unable to extract meaningful information from many time-varying natural signals. Another clear emerging need is in growing deep learning architectures with the size of the problem at hand, suggesting that such architectures should map well to custom hardware platforms. The latter offer much better performance than that achievable using CPUs or even GPUs. Analog computation is a unique potential solution to the scalability challenge offering the benefits of low power consumption and smaller physical size when compared to digital implementations. However, these benefits come with the consequence of inaccurate computations and noise. This work presents an enhanced formulation of DeSTIN - a Deep Spatio-Temporal Inference Network (DeSTIN) that is inherently designed to capture both spatial and temporal dependencies in the data provided. The regular structure of DeSTIN, its computational requirements, and local connectivity render it hardware-efficient and highly scalable. Implementation of DeSTIN using analog computation is studied in detail, where the architectural robustness to various distortions in its signals is demonstrated. To the best of our knowledge, this is the first time custom analog hardware has been developed for deep machine learning. Key enhancements to previous formulations of DeSTIN are discussed in detail and results on standard benchmarks are presented. This work helps pave the way for advancing deep learning to address some of the long-standing challenges in machine learning

    Continual learning from stationary and non-stationary data

    Get PDF
    Continual learning aims at developing models that are capable of working on constantly evolving problems over a long-time horizon. In such environments, we can distinguish three essential aspects of training and maintaining machine learning models - incorporating new knowledge, retaining it and reacting to changes. Each of them poses its own challenges, constituting a compound problem with multiple goals. Remembering previously incorporated concepts is the main property of a model that is required when dealing with stationary distributions. In non-stationary environments, models should be capable of selectively forgetting outdated decision boundaries and adapting to new concepts. Finally, a significant difficulty can be found in combining these two abilities within a single learning algorithm, since, in such scenarios, we have to balance remembering and forgetting instead of focusing only on one aspect. The presented dissertation addressed these problems in an exploratory way. Its main goal was to grasp the continual learning paradigm as a whole, analyze its different branches and tackle identified issues covering various aspects of learning from sequentially incoming data. By doing so, this work not only filled several gaps in the current continual learning research but also emphasized the complexity and diversity of challenges existing in this domain. Comprehensive experiments conducted for all of the presented contributions have demonstrated their effectiveness and substantiated the validity of the stated claims

    Autoencoder-based Anomaly Detection in Streaming Data with Incremental Learning and Concept Drift Adaptation

    Full text link
    In our digital universe nowadays, enormous amount of data are produced in a streaming manner in a variety of application areas. These data are often unlabelled. In this case, identifying infrequent events, such as anomalies, poses a great challenge. This problem becomes even more difficult in non-stationary environments, which can cause deterioration of the predictive performance of a model. To address the above challenges, the paper proposes an autoencoder-based incremental learning method with drift detection (strAEm++DD). Our proposed method strAEm++DD leverages on the advantages of both incremental learning and drift detection. We conduct an experimental study using real-world and synthetic datasets with severe or extreme class imbalance, and provide an empirical analysis of strAEm++DD. We further conduct a comparative study, showing that the proposed method significantly outperforms existing baseline and advanced methods.Comment: anomaly detection, concept drift, incremental anomaly detection, concept drift, incremental learning, autoencoders, data streams, class imbalance, nonstationary environment

    A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams

    Full text link
    Unlabelled data appear in many domains and are particularly relevant to streaming applications, where even though data is abundant, labelled data is rare. To address the learning problems associated with such data, one can ignore the unlabelled data and focus only on the labelled data (supervised learning); use the labelled data and attempt to leverage the unlabelled data (semi-supervised learning); or assume some labels will be available on request (active learning). The first approach is the simplest, yet the amount of labelled data available will limit the predictive performance. The second relies on finding and exploiting the underlying characteristics of the data distribution. The third depends on an external agent to provide the required labels in a timely fashion. This survey pays special attention to methods that leverage unlabelled data in a semi-supervised setting. We also discuss the delayed labelling issue, which impacts both fully supervised and semi-supervised methods. We propose a unified problem setting, discuss the learning guarantees and existing methods, explain the differences between related problem settings. Finally, we review the current benchmarking practices and propose adaptations to enhance them

    Neuromorphic Learning Systems for Supervised and Unsupervised Applications

    Get PDF
    The advancements in high performance computing (HPC) have enabled the large-scale implementation of neuromorphic learning models and pushed the research on computational intelligence into a new era. Those bio-inspired models are constructed on top of unified building blocks, i.e. neurons, and have revealed potentials for learning of complex information. Two major challenges remain in neuromorphic computing. Firstly, sophisticated structuring methods are needed to determine the connectivity of the neurons in order to model various problems accurately. Secondly, the models need to adapt to non-traditional architectures for improved computation speed and energy efficiency. In this thesis, we address these two problems and apply our techniques to different cognitive applications. This thesis first presents the self-structured confabulation network for anomaly detection. Among the machine learning applications, unsupervised detection of the anomalous streams is especially challenging because it requires both detection accuracy and real-time performance. Designing a computing framework that harnesses the growing computing power of the multicore systems while maintaining high sensitivity and specificity to the anomalies is an urgent research need. We present AnRAD (Anomaly Recognition And Detection), a bio-inspired detection framework that performs probabilistic inferences. We leverage the mutual information between the features and develop a self-structuring procedure that learns a succinct confabulation network from the unlabeled data. This network is capable of fast incremental learning, which continuously refines the knowledge base from the data streams. Compared to several existing anomaly detection methods, the proposed approach provides competitive detection accuracy as well as the insight to reason the decision making. Furthermore, we exploit the massive parallel structure of the AnRAD framework. Our implementation of the recall algorithms on the graphic processing unit (GPU) and the Xeon Phi co-processor both obtain substantial speedups over the sequential implementation on general-purpose microprocessor (GPP). The implementation enables real-time service to concurrent data streams with diversified contexts, and can be applied to large problems with multiple local patterns. Experimental results demonstrate high computing performance and memory efficiency. For vehicle abnormal behavior detection, the framework is able to monitor up to 16000 vehicles and their interactions in real-time with a single commodity co-processor, and uses less than 0.2ms for each testing subject. While adapting our streaming anomaly detection model to mobile devices or unmanned systems, the key challenge is to deliver required performance under the stringent power constraint. To address the paradox between performance and power consumption, brain-inspired hardware, such as the IBM Neurosynaptic System, has been developed to enable low power implementation of neural models. As a follow-up to the AnRAD framework, we proposed to port the detection network to the TrueNorth architecture. Implementing inference based anomaly detection on a neurosynaptic processor is not straightforward due to hardware limitations. A design flow and the supporting component library are developed to flexibly map the learned detection networks to the neurosynaptic cores. Instead of the popular rate code, burst code is adopted in the design, which represents numerical value using the phase of a burst of spike trains. This does not only reduce the hardware complexity, but also increases the result\u27s accuracy. A Corelet library, NeoInfer-TN, is implemented for basic operations in burst code and two-phase pipelines are constructed based on the library components. The design can be configured for different tradeoffs between detection accuracy, hardware resource consumptions, throughput and energy. We evaluate the system using network intrusion detection data streams. The results show higher detection rate than some conventional approaches and real-time performance, with only 50mW power consumption. Overall, it achieves 10^8 operations per Joule. In addition to the modeling and implementation of unsupervised anomaly detection, we also investigate a supervised learning model based on neural networks and deep fragment embedding and apply it to text-image retrieval. The study aims at bridging the gap between image and natural language. It continues to improve the bidirectional retrieval performance across the modalities. Unlike existing works that target at single sentence densely describing the image objects, we elevate the topic to associating deep image representations with noisy texts that are only loosely correlated. Based on text-image fragment embedding, our model employs a sequential configuration, connects two embedding stages together. The first stage learns the relevancy of the text fragments, and the second stage uses the filtered output from the first one to improve the matching results. The model also integrates multiple convolutional neural networks (CNN) to construct the image fragments, in which rich context information such as human faces can be extracted to increase the alignment accuracy. The proposed method is evaluated with both synthetic dataset and real-world dataset collected from picture news website. The results show up to 50% ranking performance improvement over the comparison models

    Intrusion detection by machine learning = Behatolás detektálás gépi tanulás által

    Get PDF
    Since the early days of information technology, there have been many stakeholders who used the technological capabilities for their own benefit, be it legal operations, or illegal access to computational assets and sensitive information. Every year, businesses invest large amounts of effort into upgrading their IT infrastructure, yet, even today, they are unprepared to protect their most valuable assets: data and knowledge. This lack of protection was the main reason for the creation of this dissertation. During this study, intrusion detection, a field of information security, is evaluated through the use of several machine learning models performing signature and hybrid detection. This is a challenging field, mainly due to the high velocity and imbalanced nature of network traffic. To construct machine learning models capable of intrusion detection, the applied methodologies were the CRISP-DM process model designed to help data scientists with the planning, creation and integration of machine learning models into a business information infrastructure, and design science research interested in answering research questions with information technology artefacts. The two methodologies have a lot in common, which is further elaborated in the study. The goals of this dissertation were two-fold: first, to create an intrusion detector that could provide a high level of intrusion detection performance measured using accuracy and recall and second, to identify potential techniques that can increase intrusion detection performance. Out of the designed models, a hybrid autoencoder + stacking neural network model managed to achieve detection performance comparable to the best models that appeared in the related literature, with good detections on minority classes. To achieve this result, the techniques identified were synthetic sampling, advanced hyperparameter optimization, model ensembles and autoencoder networks. In addition, the dissertation set up a soft hierarchy among the different detection techniques in terms of performance and provides a brief outlook on potential future practical applications of network intrusion detection models as well
    • …
    corecore