588 research outputs found

    Capturing "attrition intensifying" structural traits from didactic interaction sequences of MOOC learners

    Get PDF
    This work is an attempt to discover hidden structural configurations in learning activity sequences of students in Massive Open Online Courses (MOOCs). Leveraging combined representations of video clickstream interactions and forum activities, we seek to fundamentally understand traits that are predictive of decreasing engagement over time. Grounded in the interdisciplinary field of network science, we follow a graph based approach to successfully extract indicators of active and passive MOOC participation that reflect persistence and regularity in the overall interaction footprint. Using these rich educational semantics, we focus on the problem of predicting student attrition, one of the major highlights of MOOC literature in the recent years. Our results indicate an improvement over a baseline ngram based approach in capturing "attrition intensifying" features from the learning activities that MOOC learners engage in. Implications for some compelling future research are discussed.Comment: "Shared Task" submission for EMNLP 2014 Workshop on Modeling Large Scale Social Interaction in Massively Open Online Course

    Dropout Model Evaluation in MOOCs

    Full text link
    The field of learning analytics needs to adopt a more rigorous approach for predictive model evaluation that matches the complex practice of model-building. In this work, we present a procedure to statistically test hypotheses about model performance which goes beyond the state-of-the-practice in the community to analyze both algorithms and feature extraction methods from raw data. We apply this method to a series of algorithms and feature sets derived from a large sample of Massive Open Online Courses (MOOCs). While a complete comparison of all potential modeling approaches is beyond the scope of this paper, we show that this approach reveals a large gap in dropout prediction performance between forum-, assignment-, and clickstream-based feature extraction methods, where the latter is significantly better than the former two, which are in turn indistinguishable from one another. This work has methodological implications for evaluating predictive or AI-based models of student success, and practical implications for the design and targeting of at-risk student models and interventions

    Resource Mention Extraction for MOOC Discussion Forums

    Full text link
    In discussions hosted on discussion forums for MOOCs, references to online learning resources are often of central importance. They contextualize the discussion, anchoring the discussion participants' presentation of the issues and their understanding. However they are usually mentioned in free text, without appropriate hyperlinking to their associated resource. Automated learning resource mention hyperlinking and categorization will facilitate discussion and searching within MOOC forums, and also benefit the contextualization of such resources across disparate views. We propose the novel problem of learning resource mention identification in MOOC forums. As this is a novel task with no publicly available data, we first contribute a large-scale labeled dataset, dubbed the Forum Resource Mention (FoRM) dataset, to facilitate our current research and future research on this task. We then formulate this task as a sequence tagging problem and investigate solution architectures to address the problem. Importantly, we identify two major challenges that hinder the application of sequence tagging models to the task: (1) the diversity of resource mention expression, and (2) long-range contextual dependencies. We address these challenges by incorporating character-level and thread context information into a LSTM-CRF model. First, we incorporate a character encoder to address the out-of-vocabulary problem caused by the diversity of mention expressions. Second, to address the context dependency challenge, we encode thread contexts using an RNN-based context encoder, and apply the attention mechanism to selectively leverage useful context information during sequence tagging. Experiments on FoRM show that the proposed method improves the baseline deep sequence tagging models notably, significantly bettering performance on instances that exemplify the two challenges
    corecore