1,331 research outputs found

    Those Ubiquitous Cut Polyhedra

    Get PDF

    On Generalizations of Network Design Problems with Degree Bounds

    Get PDF
    Iterative rounding and relaxation have arguably become the method of choice in dealing with unconstrained and constrained network design problems. In this paper we extend the scope of the iterative relaxation method in two directions: (1) by handling more complex degree constraints in the minimum spanning tree problem (namely, laminar crossing spanning tree), and (2) by incorporating `degree bounds' in other combinatorial optimization problems such as matroid intersection and lattice polyhedra. We give new or improved approximation algorithms, hardness results, and integrality gaps for these problems.Comment: v2, 24 pages, 4 figure

    Structural relaxation around substitutional Cr3+ in MgAl2O4

    Get PDF
    The structural environment of substitutional Cr3+ ion in MgAl2O4 spinel has been investigated by Cr K-edge Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES) spectroscopies. First-principles computations of the structural relaxation and of the XANES spectrum have been performed, with a good agreement to the experiment. The Cr-O distance is close to that in MgCr2O4, indicating a full relaxation of the first neighbors, and the second shell of Al atoms relaxes partially. These observations demonstrate that Vegard's law is not obeyed in the MgAl2O4-MgCr2O4 solid solution. Despite some angular site distortion, the local D3d symmetry of the B-site of the spinel structure is retained during the substitution of Cr for Al. Here, we show that the relaxation is accomodated by strain-induced bond buckling, with angular tilts of the Mg-centred tetrahedra around the Cr-centred octahedron. By contrast, there is no significant alteration of the angles between the edge-sharing octahedra, which build chains aligned along the three four-fold axes of the cubic structure.Comment: 7 pages, 4 figure

    Part 1: a process view of nature. Multifunctional integration and the role of the construction agent

    Get PDF
    This is the first of two linked articles which draw s on emerging understanding in the field of biology and seeks to communicate it to those of construction, engineering and design. Its insight is that nature 'works' at the process level, where neither function nor form are distinctions, and materialisation is both the act of negotiating limited resource and encoding matter as 'memory', to sustain and integrate processes through time. It explores how biological agents derive work by creating 'interfaces' between adjacent locations as membranes, through feedback. Through the tension between simultaneous aggregation and disaggregation of matter by agents with opposing objectives, many functions are integrated into an interface as it unfolds. Significantly, biological agents induce flow and counterflow conditions within biological interfaces, by inducing phase transition responses in the matte r or energy passing through them, driving steep gradients from weak potentials (i.e. shorter distances and larger surfaces). As with biological agents, computing, programming and, increasingly digital sensor and effector technologies share the same 'agency' and are thus convergent

    Tailoring Glass Properties: Why Chemical Composition and Thermal Treatments Matter

    Get PDF
    Architectural use of glass dates back from the beginning of our era when it wasused to make windows. Its range of chemical composition was close to that ofcurrent flat or hollow glass, illustrating early optimization of both productionprocess and material properties. In modern buildings glass is ubiquitous, highlyvisible as in facades or hidden as fibers for thermal insulation or for high-speedtelecommunication. This short review describes the main factors that have madethis variety of uses possible. The fundamental point is the amorphous nature ofglass, which allows pieces of any shape and size to be produced and the propertiesof the material to be tailored through thermal treatments and incorporation of a hostof chemical elements in widely different proportions

    Plato's cube and the natural geometry of fragmentation

    Full text link
    Plato envisioned Earth's building blocks as cubes, a shape rarely found in nature. The solar system is littered, however, with distorted polyhedra -- shards of rock and ice produced by ubiquitous fragmentation. We apply the theory of convex mosaics to show that the average geometry of natural 2D fragments, from mud cracks to Earth's tectonic plates, has two attractors: "Platonic" quadrangles and "Voronoi" hexagons. In 3D the Platonic attractor is dominant: remarkably, the average shape of natural rock fragments is cuboid. When viewed through the lens of convex mosaics, natural fragments are indeed geometric shadows of Plato's forms. Simulations show that generic binary breakup drives all mosaics toward the Platonic attractor, explaining the ubiquity of cuboid averages. Deviations from binary fracture produce more exotic patterns that are genetically linked to the formative stress field. We compute the universal pattern generator establishing this link, for 2D and 3D fragmentation.Comment: main: 6 pages, 6 figures, supplementary: 18 pages, 12 figure

    Crystalline Order On Riemannian Manifolds With Variable Gaussian Curvature And Boundary

    Get PDF
    We investigate the zero temperature structure of a crystalline monolayer constrained to lie on a two-dimensional Riemannian manifold with variable Gaussian curvature and boundary. A full analytical treatment is presented for the case of a paraboloid of revolution. Using the geometrical theory of topological defects in a continuum elastic background we find that the presence of a variable Gaussian curvature, combined with the additional constraint of a boundary, gives rise to a rich variety of phenomena beyond that known for spherical crystals. We also provide a numerical analysis of a system of classical particles interacting via a Coulomb potential on the surface of a paraboloid.Comment: 12 pages, 8 figure
    corecore