16 research outputs found

    Mobility management across converged IP-based heterogeneous access networks

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 8/2/2010.In order to satisfy customer demand for a high performance “global” mobility service, network operators (ISPs, carriers, mobile operators, etc.) are facing the need to evolve to a converged “all-IP” centric heterogeneous access infrastructure. However, the integration of such heterogeneous access networks (e.g. 802.11, 802.16e, UMTS etc) brings major mobility issues. This thesis tackles issues plaguing existing mobility management solutions in converged IP-based heterogeneous networks. In order to do so, the thesis firstly proposes a cross-layer mechanism using the upcoming IEEE802.21 MIH services to make intelligent and optimized handovers. In this respect, FMIPv6 is integrated with the IEEE802.21 mechanism to provide seamless mobility during the overall handover process. The proposed solution is then applied in a simulated vehicular environment to optimize the NEMO handover process. It is shown through analysis and simulations of the signalling process that the overall expected handover (both L2 and L3) latency in FMIPv6 can be reduced by the proposed mechanism by 69%. Secondly, it is expected that the operator of a Next Generation Network will provide mobility as a service that will generate significant revenues. As a result, dynamic service bootstrapping and authorization mechanisms must be in place to efficiently deploy a mobility service (without static provisioning), which will allow only legitimate users to access the service. A GNU Linux based test-bed has been implemented to demonstrate this. The experiments presented show the handover performance of the secured FMIPv6 over the implemented test-bed compared to plain FMIPv6 and MIPv6 by providing quantitative measurements and results on the quality of experience perceived by the users of IPv6 multimedia applications. The results show the inclusion of the additional signalling of the proposed architecture for the purpose of authorization and bootstrapping (i.e. key distribution using HOKEY) has no adverse effect on the overall handover process. Also, using a formal security analysis tool, it is shown that the proposed mechanism is safe/secure from the induced security threats. Lastly, a novel IEEE802.21 assisted EAP based re-authentication scheme over a service authorization and bootstrapping framework is presented. AAA based authentication mechanisms like EAP incur signalling overheads due to large RTTs. As a result, overall handover latency also increases. Therefore, a fast re-authentication scheme is presented which utilizes IEEE802.21 MIH services to minimize the EAP authentication process delays and as a result reduce the overall handover latency. Analysis of the signalling process based on analytical results shows that the overall handover latency for mobility protocols will be approximately reduced by 70% by the proposed scheme

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    Mobility management across converged IP-based heterogeneous access networks

    Get PDF
    In order to satisfy customer demand for a high performance “global” mobility service, network operators (ISPs, carriers, mobile operators, etc.) are facing the need to evolve to a converged “all-IP” centric heterogeneous access infrastructure. However, the integration of such heterogeneous access networks (e.g. 802.11, 802.16e, UMTS etc) brings major mobility issues. This thesis tackles issues plaguing existing mobility management solutions in converged IP-based heterogeneous networks. In order to do so, the thesis firstly proposes a cross-layer mechanism using the upcoming IEEE802.21 MIH services to make intelligent and optimized handovers. In this respect, FMIPv6 is integrated with the IEEE802.21 mechanism to provide seamless mobility during the overall handover process. The proposed solution is then applied in a simulated vehicular environment to optimize the NEMO handover process. It is shown through analysis and simulations of the signalling process that the overall expected handover (both L2 and L3) latency in FMIPv6 can be reduced by the proposed mechanism by 69%. Secondly, it is expected that the operator of a Next Generation Network will provide mobility as a service that will generate significant revenues. As a result, dynamic service bootstrapping and authorization mechanisms must be in place to efficiently deploy a mobility service (without static provisioning), which will allow only legitimate users to access the service. A GNU Linux based test-bed has been implemented to demonstrate this. The experiments presented show the handover performance of the secured FMIPv6 over the implemented test-bed compared to plain FMIPv6 and MIPv6 by providing quantitative measurements and results on the quality of experience perceived by the users of IPv6 multimedia applications. The results show the inclusion of the additional signalling of the proposed architecture for the purpose of authorization and bootstrapping (i.e. key distribution using HOKEY) has no adverse effect on the overall handover process. Also, using a formal security analysis tool, it is shown that the proposed mechanism is safe/secure from the induced security threats. Lastly, a novel IEEE802.21 assisted EAP based re-authentication scheme over a service authorization and bootstrapping framework is presented. AAA based authentication mechanisms like EAP incur signalling overheads due to large RTTs. As a result, overall handover latency also increases. Therefore, a fast re-authentication scheme is presented which utilizes IEEE802.21 MIH services to minimize the EAP authentication process delays and as a result reduce the overall handover latency. Analysis of the signalling process based on analytical results shows that the overall handover latency for mobility protocols will be approximately reduced by 70% by the proposed scheme.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mobility management across converged IP-based heterogeneous access networks

    Get PDF
    In order to satisfy customer demand for a high performance “global” mobility service, network operators (ISPs, carriers, mobile operators, etc.) are facing the need to evolve to a converged “all-IP” centric heterogeneous access infrastructure. However, the integration of such heterogeneous access networks (e.g. 802.11, 802.16e, UMTS etc) brings major mobility issues. This thesis tackles issues plaguing existing mobility management solutions in converged IP-based heterogeneous networks. In order to do so, the thesis firstly proposes a cross-layer mechanism using the upcoming IEEE802.21 MIH services to make intelligent and optimized handovers. In this respect, FMIPv6 is integrated with the IEEE802.21 mechanism to provide seamless mobility during the overall handover process. The proposed solution is then applied in a simulated vehicular environment to optimize the NEMO handover process. It is shown through analysis and simulations of the signalling process that the overall expected handover (both L2 and L3) latency in FMIPv6 can be reduced by the proposed mechanism by 69%. Secondly, it is expected that the operator of a Next Generation Network will provide mobility as a service that will generate significant revenues. As a result, dynamic service bootstrapping and authorization mechanisms must be in place to efficiently deploy a mobility service (without static provisioning), which will allow only legitimate users to access the service. A GNU Linux based test-bed has been implemented to demonstrate this. The experiments presented show the handover performance of the secured FMIPv6 over the implemented test-bed compared to plain FMIPv6 and MIPv6 by providing quantitative measurements and results on the quality of experience perceived by the users of IPv6 multimedia applications. The results show the inclusion of the additional signalling of the proposed architecture for the purpose of authorization and bootstrapping (i.e. key distribution using HOKEY) has no adverse effect on the overall handover process. Also, using a formal security analysis tool, it is shown that the proposed mechanism is safe/secure from the induced security threats. Lastly, a novel IEEE802.21 assisted EAP based re-authentication scheme over a service authorization and bootstrapping framework is presented. AAA based authentication mechanisms like EAP incur signalling overheads due to large RTTs. As a result, overall handover latency also increases. Therefore, a fast re-authentication scheme is presented which utilizes IEEE802.21 MIH services to minimize the EAP authentication process delays and as a result reduce the overall handover latency. Analysis of the signalling process based on analytical results shows that the overall handover latency for mobility protocols will be approximately reduced by 70% by the proposed scheme.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Architectures pour la mobilité et la qualité de service dans les systÚmse satellites DVB-S2/RCS

    Get PDF
    Nos travaux de thĂšse ont pour objectif la conception, la mise en Ɠuvre et l'Ă©valuation d'architectures pour la mobilitĂ© et la qualitĂ© de service (QoS) dans des systĂšmes satellites DVB-S2/RCS. Ces systĂšmes peuvent constituer une solution alternative efficace aux rĂ©seaux terrestres dans des zones reculĂ©es Ă  faible densitĂ© de population mais ils doivent pour cela offrir les mĂȘmes services tout en tenant compte de leurs caractĂ©ristiques spĂ©cifiques, en particulier leur long dĂ©lai de transmission qui peut s'avĂ©rer problĂ©matique dans le cadre d'applications multimĂ©dias interactives. Notre premiĂšre contribution a donc Ă©tĂ© de dĂ©velopper une architecture de QoS adaptĂ©e Ă  ce type d'applications, utilisant le modĂšle DiffServ et se basant essentiellement sur l'interaction entre l'architecture liĂ©e au protocole d'initiation de session SIP et diffĂ©rentes entitĂ©s du systĂšme satellite. La QoS peut alors ĂȘtre configurĂ©e de façon prĂ©cise au niveau des STs, par le biais de l'outil TC, en analysant les descripteurs de session SDP compris dans les messages SIP et en dĂ©duisant leurs caractĂ©ristiques (dĂ©bit, gigue max, dĂ©lai max, etc...) soit localement si elles sont connues, soit Ă  partir d'un service Web que nous avons dĂ©veloppĂ©. Nous avons ensuite proposĂ© et dĂ©veloppĂ© une solution de mobilitĂ© basĂ©e sur SIP, adaptĂ©e au systĂšme satellite ainsi qu'Ă  la solution de QoS prĂ©cĂ©demment dĂ©crite. Les performances de cette solution ont alors Ă©tĂ© comparĂ©es, en termes de temps d'interruption et de consommation de ressources, avec celles obtenues par Mobile IPv6 et certaines de ses extensions, dĂ©montrant ainsi de rĂ©elles amĂ©liorations pour le cas des applications multimĂ©dias interactives. Enfin, notre derniĂšre contribution a Ă©tĂ© de dĂ©velopper deux architectures couplant QoS et mobilitĂ©, une spĂ©cifiquement conçue pour les applications interactives et basĂ©e sur la combinaison de notre solution de mobilitĂ© SIP avec notre architecture de QoS SIP et une autre basĂ©e sur Mobile IPv6 ou FMIPv6 et sur l'interaction d'un QoS Agent mobile avec les entitĂ©s de QoS du systĂšme satellite. Ces architectures ont Ă©tĂ© Ă©valuĂ©es et comparĂ©es sur la plateforme d'Ă©mulation PLATINE dĂ©veloppĂ©e dans le cadre du projet SATSIX.Our thesis work aims at the design, the implementation and the evaluation of architectures for mobility and quality of service (QoS) in DVB-S2/RCS satellite systems. These systems can be an effective alternative to terrestrial networks in remote and sparsely populated areas but, for that, they have to offer the same services while taking into account their specific characteristics, particularly their long transmission delay that can be problematic in the context of interactive multimedia applications. Our first contribution has been to develop a QoS architecture adapted to such applications, using the DiffServ model and relying heavily on the interaction between the architecture related to the Session Initiation Protocol (SIP) and various entities of the satellite system. The QoS of satellite terminals (STs) can then be configured precisely, by using the TC tool and analyzing the SDP session descriptors included in the SIP messages and deducting their characteristics (throughput, jitter max, delay max, etc. ...) either locally, if they are known, or from a Web service that we have developed. We then proposed and developed a mobility solution based on SIP, adapted to the satellite system and to the QoS solution described above. The performances of this solution were compared in terms of handover time and resources consumption, with those obtained by Mobile IPv6 and some of its extensions, showing real improvements in the case of interactive multimedia applications. Finally, our last contribution was to develop two architectures combining QoS and mobility: the first one is specifically designed for interactive applications and based on the combination of our SIP-based mobility solution with our SIP QoS architecture and the another is based on Mobile IPv6 or FMIPv6 for the mobility part and on the interaction of a mobile QoS agent with QoS entities of the satellite system. These architectures have been evaluated and compared on the emulation platform PLATINE developed under the project SATSIX

    Handoff management for infotainment services over vehicular networks

    Get PDF
    Intelligent Transportation Systems (ITS) has impulsed the vehicular communications at the present time. The vehicular communications field is a hot research topic and is attracting a great interest in the automotive industry and telecommunications. There are essentially two main lines of work: (1) communication services related to road safety and traffic information; and (2) information and entertainment services, also named infotainment services. These latter services include both transmitting multimedia (voice over IP, streaming, on-line gaming, etc.) and classic data services (e-mail, access to private networks, web browsing, file sharing, etc.). In this thesis we will focus on these infotainment services because further research in this immature research field is necessary and, until nowadays, the main effort of the research community regarding vehicular communication has been focused on road safety and traffic information. Vehicular nodes need to be reached from the Internet and vice versa to be able to access to infotainment services. While vehicles move along the road infrastructure, they change their wireless point of attachment to the network. During this process, connectivity breaks down until the vehicle is connected again to a new road side unit in its area. This disconnection causes a disruption in the communications. Fast handoffs are a crucial requirement for vehicular networks to avoid long disruption times, since the high speed of vehicular nodes involves suffering a lot of handoffs during an Internet connection. This thesis is focused on Vehicular-to-Infrastructure (V2I) real-time infotainment services. The main contributions of this thesis are: i) a new testing framework for V2I communications to be able to test infotainment services in an easy way; ii) the analysis of the deployability of infotainment video services in vehicular networks using mobility protocols; and iii) the development of a new TCP architecture that will provide a better performance for all TCP-based infotainment services in a vehicular scenario with handoffs. In this thesis, firstly, we propose a new testing framework for vehicular infotainment applications. This framework is a vehicular emulation platform that allows testing real applications installed on Linux virtual machines. Using emulation, we are able to evaluate the performance of real applications with real-time requirements, so we can test multimedia applications used to offer infotainment services in vehicular scenarios in a straightforward way. Secondly, using the testing framework implemented in the first part of the thesis, we have done a performance evaluation of an infotainment service. Among these services, we think that video on demand services on highways will be interesting for users, and generate revenue to network operators. So we evaluated how network-layer handoffs can limit the deployment of a video streaming service. According to the results obtained, driving at high speeds will be an issue for a correct playback of video content, even using fast handoffs techniques. Finally, we developed a new TCP architecture to enhance performance during handoffs. Most of the non-safety services on ITS rely on the Transport Control Protocol (TCP), one of the core protocols of the Internet Protocol Suite. However there exists several issues related to TCP and mobility that can affect to TCP performance, and these issues are particularly important in vehicular networks due to its high mobility. Using new IEEE 802.21 MIH services, we propose a new TCP architecture that is able to anticipate handoffs, permitting to resume the communication after a handoff, avoiding long delays caused by TCP issues and adapting the TCP parameters to the new characteristics of the network. Using the architecture proposed, the performance of TCP is enhanced, getting a higher overall throughput and avoiding TCP fairness issues between users.Els Sistemes de Transport Intel·ligents (ITS) han impulsat les comunicacions vehiculars en l'actualitat. Les comunicacions vehiculars Ă©s un camp d'investigaciĂł de moda, i estĂ  atraient un gran interĂšs en la indĂșstria automobilĂ­stica i de les telecomunicacions. En el camp de les comunicacions vehiculars, hi ha principalment dues lĂ­nies de treball: (1) serveis de comunicacions relacionats amb la seguretat viĂ ria i la informaciĂł del trĂ nsit; i (2) serveis d'informaciĂł i entreteniment, tambĂ© anomenats serveis d'infotainment. Aquests Ășltims inclouen tant serveis multimĂšdia (veu sobre IP, streaming, jocs on-line, etc.), com serveis clĂ ssics de dades (correu electrĂČnic, accĂ©s a xarxes privades, navegaciĂł web, compartir arxius, etc.). En aquesta tesi ens centrarem en aquests serveis d'infotainment ja que Ă©s necessari aprofundir en la investigaciĂł per aquests tipus de serveis, ja que, fins avui, els esforços de la comunitat cientĂ­fica en el camp de les comunicacions vehiculars s'ha centrat en els serveis relacionats amb la seguretat viĂ ria i la informaciĂł del trĂ nsit. Els nodes vehiculars necessiten tenir connexiĂł a Internet per a poder tenir accĂ©s als serveis d'infotainment. Mentre els vehicles estan en moviment a travĂ©s de la xarxa viĂ ria, els vehicles han d'anar canviant el punt de connexiĂł sense fils amb la xarxa. Durant aquest procĂ©s de canvi de punt de connexiĂł, anomenat handoff, es perd la connectivitat fins que el vehicle es reconnecta a un altre punt de connexiĂł viĂ ria prop de la seva Ă rea. Aquesta desconnexiĂł causa interrupcions en les comunicacions. Uns handoffs rĂ pids sĂłn bĂ sics a les xarxes vehiculars per a evitar llargs perĂ­odes d'interrupciĂł durant les comunicacions, ja que la gran velocitat a la que es mouen els nodes vehiculars significa un gran nombre de handoffs durant una connexiĂł a Internet. Aquesta tesi es centra en serveis d'infotaiment en temps real per a comunicacions Vehicle-a-Infraestructura (V2I). Les principals contribucions d'aquesta tesi son: i) un nou marc de proves per a les comunicacions (V2I) per a poder provar serveis d'infotainment d'una manera fĂ cil; ii) l'anĂ lisi de la viabilitat del desplegament de serveis d'infotainment de vĂ­deo en xarxes vehiculars utilitzant protocols de mobilitat IP; i iii) el desenvolupament d'una nova arquitectura TCP que proporciona un millor funcionament per a tots aquells serveis d'infotainment basats en el protocol TCP en un escenari vehicular amb handoffs. En aquesta tesi, primer proposem un nou marc de proves per a aplicacions vehiculars d'infotainment. Aquest marc Ă©s una plataforma d'emulaciĂł vehicular que permet provar aplicacions reals instal·lades en mĂ quines virtuals Linux. Utilitzant l'emulaciĂł, som capaços d'avaluar el rendiment d'aplicacions reals amb caracterĂ­stiques de temps real. D'aquesta manera es poden avaluar aplicacions multimĂšdia utilitzades per oferir serveis d'infotainment d'una forma senzilla en escenaris vehiculars. Segon, utilitzant el marc de prova implementat en la primera part de la tesi, hem avaluat el rendiment d'un servei d'infotainment. Entre aquest tipus de servei, creem que els serveis de vĂ­deo sota demanda en autopistes/autovies serĂ  interessant pels usuaris i generarĂ  beneficis per als operadors de la xarxa. Per tant, hem avaluat com els handoffs a nivell de la capa de xarxa poden limitar el desplegament d'un servei de streaming de vĂ­deo sota demanda. D'acord amb els resultats obtinguts, conduir a grans velocitats podria ser un problema per a poder reproduir un vĂ­deo correctament, tot i utilitzar tĂšcniques de handoffs rĂ pids. Finalment, hem desenvolupat una nova arquitectura TCP per a millorar el rendiment del protocol durant els handoffs. La majoria dels serveis d'infotainment utilitzen el Protocol de Control de Transport (TCP), un dels principals protocols de la pila de protocols d'Internet. PerĂČ existeixen forces problemes relacionats amb l'Ășs de TCP i la mobilitat que n'afecta el rendiment, i aquests problemes sĂłn particular

    Game theory for dynamic spectrum sharing cognitive radio

    Get PDF
    ‘Game Theory’ is the formal study of conflict and cooperation. The theory is based on a set of tools that have been developed in order to assist with the modelling and analysis of individual, independent decision makers. These actions potentially affect any decisions, which are made by other competitors. Therefore, it is well suited and capable of addressing the various issues linked to wireless communications. This work presents a Green Game-Based Hybrid Vertical Handover Model. The model is used for heterogeneous wireless networks, which combines both dynamic (Received Signal Strength and Node Mobility) and static (Cost, Power Consumption and Bandwidth) factors. These factors control the handover decision process; whereby the mechanism successfully eliminates any unnecessary handovers, reduces delay and overall number of handovers to 50% less and 70% less dropped packets and saves 50% more energy in comparison to other mechanisms. A novel Game-Based Multi-Interface Fast-Handover MIPv6 protocol is introduced in this thesis as an extension to the Multi-Interface Fast-handover MIPv6 protocol. The protocol works when the mobile node has more than one wireless interface. The protocol controls the handover decision process by deciding whether a handover is necessary and helps the node to choose the right access point at the right time. In addition, the protocol switches the mobile nodes interfaces ‘ON’ and ‘OFF’ when needed to control the mobile node’s energy consumption and eliminate power lost of adding another interface. The protocol successfully reduces the number of handovers to 70%, 90% less dropped packets, 40% more received packets and acknowledgments and 85% less end-to-end delay in comparison to other Protocols. Furthermore, the thesis adapts a novel combination of both game and auction theory in dynamic resource allocation and price-power-based routing in wireless Ad-Hoc networks. Under auction schemes, destinations nodes bid the information data to access to the data stored in the server node. The server will allocate the data to the winner who values it most. Once the data has been allocated to the winner, another mechanism for dynamic routing is adopted. The routing mechanism is based on the source-destination cooperation, power consumption and source-compensation to the intermediate nodes. The mechanism dramatically increases the seller’s revenue to 50% more when compared to random allocation scheme and briefly evaluates the reliability of predefined route with respect to data prices, source and destination cooperation for different network settings. Last but not least, this thesis adjusts an adaptive competitive second-price pay-to-bid sealed auction game and a reputation-based game. This solves the fairness problems associated with spectrum sharing amongst one primary user and a large number of secondary users in a cognitive radio environment. The proposed games create a competition between the bidders and offers better revenue to the players in terms of fairness to more than 60% in certain scenarios. The proposed game could reach the maximum total profit for both primary and secondary users with better fairness; this is illustrated through numerical results.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Acesso banda larga sem fios em ambientes heterogéneos de próxima geração

    Get PDF
    Doutoramento em Engenharia InformĂĄticaO acesso ubĂ­quo Ă  Internet Ă© um dos principais desafios para os operadores de telecomunicaçÔes na prĂłxima dĂ©cada. O nĂșmero de utilizadores da Internet estĂĄ a crescer exponencialmente e o paradigma de acesso "always connected, anytime, anywhere" Ă© um requisito fundamental para as redes mĂłveis de prĂłxima geração. A tecnologia WiMAX, juntamente com o LTE, foi recentemente reconhecida pelo ITU como uma das tecnologias de acesso compatĂ­veis com os requisitos do 4G. Ainda assim, esta tecnologia de acesso nĂŁo estĂĄ completamente preparada para ambientes de prĂłxima geração, principalmente devido Ă  falta de mecanismos de cross-layer para integração de QoS e mobilidade. Adicionalmente, para alĂ©m das tecnologias WiMAX e LTE, as tecnologias de acesso rĂĄdio UMTS/HSPA e Wi-Fi continuarĂŁo a ter um impacto significativo nas comunicaçÔes mĂłveis durante os prĂłximos anos. Deste modo, Ă© fundamental garantir a coexistĂȘncia das vĂĄrias tecnologias de acesso rĂĄdio em termos de QoS e mobilidade, permitindo assim a entrega de serviços multimĂ©dia de tempo real em redes mĂłveis. Para garantir a entrega de serviços multimĂ©dia a utilizadores WiMAX, esta Tese propĂ”e um gestor cross-layer WiMAX integrado com uma arquitectura de QoS fim-a-fim. A arquitectura apresentada permite o controlo de QoS e a comunicação bidireccional entre o sistema WiMAX e as entidades das camadas superiores. Para alĂ©m disso, o gestor de cross-layer proposto Ă© estendido com eventos e comandos genĂ©ricos e independentes da tecnologia para optimizar os procedimentos de mobilidade em ambientes WiMAX. Foram realizados testes para avaliar o desempenho dos procedimentos de QoS e mobilidade da arquitectura WiMAX definida, demonstrando que esta Ă© perfeitamente capaz de entregar serviços de tempo real sem introduzir custos excessivos na rede. No seguimento das extensĂ”es de QoS e mobilidade apresentadas para a tecnologia WiMAX, o Ăąmbito desta Tese foi alargado para ambientes de acesso sem-fios heterogĂ©neos. Neste sentido, Ă© proposta uma arquitectura de mobilidade transparente com suporte de QoS para redes de acesso multitecnologia. A arquitectura apresentada integra uma versĂŁo estendida do IEEE 802.21 com suporte de QoS, bem como um gestor de mobilidade avançado integrado com os protocolos de gestĂŁo de mobilidade do nĂ­vel IP. Finalmente, para completar o trabalho desenvolvido no Ăąmbito desta Tese, Ă© proposta uma extensĂŁo aos procedimentos de decisĂŁo de mobilidade em ambientes heterogĂ©neos para incorporar a informação de contexto da rede e do terminal. Para validar e avaliar as optimizaçÔes propostas, foram desenvolvidos testes de desempenho num demonstrador inter-tecnologia, composta pelas redes de acesso WiMAX, Wi-Fi e UMTS/HSPA.Ubiquitous Internet access is one of the main challenges for the telecommunications industry in the next decade. The number of users accessing the Internet is growing exponentially and the network access paradigm of “always connected, anytime, anywhere” is a central requirement for the so-called Next Generation Mobile Networks (NGMN). WiMAX, together with LTE, was recently recognized by ITU as one of the compliant access technologies for 4G. Nevertheless, WiMAX is not yet fully prepared for next generation environments, mainly due to the lack of QoS and mobility crosslayer procedures to support real-time multimedia services delivery. Furthermore, besides the 4G compliant WiMAX and LTE radio access technologies, UMTS/HSPA and Wi-Fi will also have a significant impact in the mobile communications during the next years. Therefore, it is fundamental to ensure the coexistence of multiple radio access technologies in what QoS and mobility procedures are concerned, thereby allowing the delivery of real-time services in mobile networks. In order to provide the WiMAX mobile users with the demanded multimedia services, it is proposed in this Thesis a WiMAX cross-layer manager integrated in an end-to-end all-IP QoS enabled architecture. The presented framework enables the QoS control and bidirectional communication between WiMAX and the upper layer network entities. Furthermore, the proposed cross-layer framework is extended with media independent events and commands to optimize the mobility procedures in WiMAX environments. Tests were made to evaluate the QoS and mobility performance of the defined architecture, demonstrating that it is perfectly capable of handling and supporting real time services without introducing an excessive cost in the network. Following the QoS and mobility extensions provided for WiMAX, the scope of this Thesis is broaden and a seamless mobility architecture with QoS support in heterogeneous wireless access environments is proposed. The presented architecture integrates an extended version of the IEEE 802.21 framework with QoS support, as well as an advanced mobility manager integrated with the IP level mobility management protocols. Finally, to complete the work within the framework of this Thesis, it is proposed an extension to the handover decisionmaking processes in heterogeneous access environments through the integration of context information from both the network entities and the enduser. Performance tests were developed in a real testbed to validate the proposed optimizations in an inter-technology handover scenario involving WiMAX, Wi-Fi and UMTS/HSPA
    corecore